IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XX, XXXXXXX 2001

SEAM: A State-Entity-Activity-Model
for a Well-Defined Workflow
Development Methodology

Akhilesh Bajaj and Sudha Ram, Member, IEEE Computer Society

Abstract—Current conceptual workflow models use either informally defined conceptual models or several formally defined
conceptual models that capture different aspects of the workflow, e.g., the data, process, and organizational aspects of the workflow.
To the best of our knowledge, there are no algorithms that can amalgamate these models to yield a single view of reality. A fragmented
conceptual view is useful for systems analysis and documentation. However, it fails to realize the potential of conceptual models to
provide a convenient interface to automate the design and management of workflows. First, as a step toward accomplishing this
objective, we propose SEAM (State-Entity-Activity-Model), a conceptual workflow model defined in terms of set theory. Second, no
attempt has been made, to the best of our knowledge, to incorporate time into a conceptual workflow model. SEAM incorporates the
temporal aspect of workflows. Third, we apply SEAM to a real-life organizational unit's workflows. In this work, we show a subset of the
workflows modeled for this organization using SEAM. We also demonstrate, via a prototype application, how the SEAM schema can be
implemented on a relational database management system. We present the lessons we learned about the advantages obtained for the
organization and, for developers who choose to use SEAM, we also present potential pitfalls in using the SEAM methodology to build
workflow systems on relational platforms. The information contained in this work is sufficient enough to allow application developers to
utilize SEAM as a methodology to analyze, design, and construct workflow applications on current relational database management
systems. The definition of SEAM as a context-free grammar, definition of its semantics, and its mapping to relational platforms should
be sufficient also, to allow the construction of an automated workflow design and construction tool with SEAM as the user interface.

Index Terms—Workflow systems, data modeling, process modeling, relational databases, temporal models, requirements

engineering.

1 INTRODUCTION

ECENTLY, the design and construction of Workflow

Management Systems (WFMS) has emerged as an
important area in both theory and practice (e.g., [1], [2],
[3], [4], [5]). We borrow our definition of a workflow from
[1] who defines a workflow as a collection of tasks
organized to accomplish some business objective. This
definition conforms to a widely accepted understanding of
a workflow in the literature (e.g., [6], [7]). Hence, in this
work, the notion of a “business process” is synonymous
with that of a “workflow.”

Current methodologies that are used to specify work-
flows at a conceptual level involve using several informal or
semiformal models to model different aspects of the
workflow, such as the data aspect, the process aspect, and
the organizational aspect. This fragmented conceptual view
is useful for the purpose of systems analysis and docu-
mentation, but it does not enable the model to formally
assist in the construction of the workflow or in its manage-
ment. In this work, we propose a solution to this problem,
in the form of SEAM (State-Entity-Activity-Model), a single

o A. Bajaj is with the Heinz School, Carnegie Mellon University, Pittsburgh,
PA 15213. E-mail: akhilesh@andrew.cmu.edu.

e S. Ram is with the Department of MIS, Eller College of Business, 430]
McClelland Hall, University of Tuscon, AZ 85721.
E-mail: ram@bpa.arizona.edu.

Manuscript received 9 July 1998; revised 22 Mar. 2000; accepted 7 Sept. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 107025.

conceptual workflow model that we formally define and
specify as a context-free grammar. We also provide
mapping rules that map SEAM schemas to abstractions
that are supported by commercial relational database
management systems (RDBMS). We discuss the feasibility
of using SEAM for modeling real-world workflows, based
on a real-life case study. Finally, to demonstrate the
feasibility of support for SEAM concepts on commercial
RDBMSs, we present a prototype workflow application
built on a commercially available RDBMS.

The primary motivation for this work is to present
sufficient information so that automated tools (in the form
of compilers) can be constructed that will map a
SEAM model schema to abstractions supported by a
RDBMS and, thus, aid in the construction of workflow
applications. A secondary motivation is providing guide-
lines for the development of RDBMSs themselves, as they
evolve to support workflows. Thus, some of the concepts in
SEAM (e.g., the temporal concepts) may be modeled
directly as abstractions in future RDBMSs, or implemented
separately as cartridges in object relational databases.

Having briefly described the motivation for this work,
we next present the research context of this work.

Several issues have been identified in workflow research,
and specialized implementations have been proposed and,
in some cases prototyped, to resolve these issues. The issues
can be broadly divided into implementation issues and
business process modeling issues. Implementation issues are

1041-4347/01/$10.00 © 2001 IEEE

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XX, XXXXXXX 2001

the low-level changes that need to be made to applications
that deal directly with the operating system and/or hard-
ware. Business process modeling issues start at the level of
capturing descriptions of end-user requirements and then go
down to varying levels of actually implementing the system.

Implementation issues include newer transaction mod-
els, interworkflow communication architectures, and mana-
ging workflows in heterogeneous and distributed (HAD)
environments. For example, [8] proposes a data model and
nonisolated transaction model as part of their WFEMS. An
active, object-oriented database management system
(DBMS) is used by [6] to build their WEMS. A WEMS is
constructed and presented in [9] using FlowMark [10],
which is a specialized workflow system product. An
architecture for exception handling in interorganizational
workflows is proposed in [11]. A specialized messaging bus
architecture to manage workflows, and allow for better
communication is described in [12]. An argument for why
serializability is too strict a criterion for workflow transac-
tions is presented in [13], who describe a distributed agent
architecture that can be used to develop workflow applica-
tions. A synthesis of different transaction models is
presented in [14]. The management of workflows in
distributed environments is demonstrated in [15]. A light
workflow system based on Petri Nets is demonstrated in
[16]. The materialization of object-oriented views and their
application to workflow systems is presented in [17]. A
transaction oriented workflow environment is presented as
a class library by [18]. The class library provides features for
the construction of long-lived, concurrent, nested, multi-
threaded activities. A dynamic and distributed environ-
ment for task scheduling called FlowAgent is presented in
[19]. Specialized implementations offer the advantages of
better performance and efficiency, and in some cases,
facilities that are simply not offered by existing systems.

In business process modeling, several conceptual mod-
els (e.g., [20], [21], [22], [23]) have been proposed. Many of
these models share common concepts such as the data,
activities, controls, and organizational responsibilities in-
volved in the workflow. Some models are informally
defined [24], [25]. Thus, user workflows are modeled using
operational user profiles in [26], when evaluating the
quality of service in Web-based education systems. The
incidence and causes of human and organizational error are
captured in a model proposed in [27]. This model is used to
suggest strategies for business process reengineering that
minimize specific errors. A knowledge-based approach to
depicting workflow exceptions is presented in [28], wherein
the goal is to assist users in managing exceptions that may
arise. Operational parameterized building blocks are used
to construct workflow schema in [29].

Other modeling environments (e.g., [20], [22], [30]) use
several semiformally defined models to model different
aspects of the business process, such as the data aspects, the
activity aspects, and the organizational aspects. In [31],
workflows are modeled as reactive objects that only obey
ECA (event-condition-action) rules. These models help in
the analysis phase, as well as in documenting user
requirements. However, as pointed out in [16], the potential
of conceptual models to formally assist in the construction

of a workflow system and help manage the workflows has
not been realized. In this work, we attempt to address this
problem.

In order to make workflow systems that can be specified
and managed at the conceptual level, we propose that the
following requirements need to be satisfied: First, a single
conceptual model is needed to represent the entire system.
Second, this conceptual model must be formally specified
and be able to map to a reasonably low level of workflow
design. Third, the conceptual model must be easy to use
and scalable for large real-world applications. Now, we
explain each of these issues.

A single conceptual model is required because, to the
best of our knowledge, no algorithms exist to amalgamate
diverse data and process models to form a single view of the
reality being modeled. A single view of the reality is needed
at the conceptual level before any mapping to lower levels
can be done. Support for this argument can be found in [32].

The model needs to be formal so that its semantics are
well-understood, and a tool (such as a compiler) can be
constructed to map the model to lower levels. Thus, a
single, mappable conceptual workflow model will facilitate
the construction of a workflow design tool and also make it
possible to manage workflows by making changes via the
conceptual level.

Finally, the model needs to be easy to use so that it scales
well to modeling real-world workflows. Thus, a model that
captures information about workflows down to the level of
the actual code will result in extremely complex schemas
when applied to modeling real-world workflows. Note the
trade-off here between the depth of the implementation
level to which the conceptual model can be mapped and the
ease of use of the model. Thus, a model A that supports the
process titles with verbal descriptions for describing the
processes will be easier to use and more scalable at the
conceptual level than another model B that formally models
the entire logic of the processes using, say, finite state
machines. However, model B will map to a lower level of
implementation than model A.

In the well-established area of database application
construction, such a model already exists and is widely
used. The methodology based on this model is briefly
summarized in Fig. la. In the methodology, a single
conceptual data model (the Entity Relationship Model
(ERM) [33]) is used to capture the end-user’s reality. The
mapping from the conceptual to the implementation model
(the relational data model [34]) is well-defined and can be
automated. We call such a methodology a “well-defined”
methodology. Such a methodology is necessary in order to
be able to construct and manage database applications from
the conceptual level itself. Several prototypes of automated
design tools using this well-defined methodology (e.g., [35],
[36]) have been constructed.

In Fig. 1b, we depict the primary contribution of this
work: a well-defined workflow systems development
methodology that can be used in the analysis, design, and
construction of workflow systems using current relational
database management system platforms. To achieve this,
we present SEAM, a single conceptual workflow model. We
define its semantics in terms of set theory, and define the set

BAJAJ AND RAM: SEAM: A STATE-ENTITY-ACTIVITY-MODEL FOR A WELL-DEFINED WORKFLOW DEVELOPMENT METHODOLOGY

M Implementation DBMS
Conceptual ~ [FR-Map p
- — . .
Model (E-R) Model of DEMS == Application
(Relational Model)
(@)
SEAM- Implementation WFEMS
pplication
supported
by current
DBMSs

(b)

Fig. 1. The analogy between an established, well-defined database methodology and the proposed well-defined workflow methodology. (a) An
existing well-defined methodology to create workflow applications using the relational model. (b) A possible well-defined methodology to create
workflow applications using implementation abstractions supported by current DBMSs.

of legal model schemas as a formal context-free grammar.
We also present a set of rules that map from SEAM to
existing RDBMS platforms, such as Sybase [37] and Oracle
[38]. While SEAM may similarly be mapped to other
specialized workflow implementations, we have two
reasons for selecting commercially available relational
implementations as the target in this work. First,
specialized implementations require substantial financial
investment, which is beyond the purview of most
organizations [39]. Second, most organizations have
personnel who are familiar with the environments of
these commercial systems [40], [41] and, hence, have a
greater incentive to utilize these systems to the fullest,
instead of moving to more specialized environments.
Hence, in this work, we present an unambiguous
mapping of a SEAM schema to abstractions supported
by current RDBMS platforms. A similar mapping to other,
more specialized implementation platforms may be
similarly done.

To the best of our knowledge, SEAM is the first
conceptual workflow model that explicitly incorporates
the representation of time. While the representation of time
in conceptual data models is a well-researched area (e.g.,
[42]), our work makes a first attempt at representing time in
a conceptual workflow model (that represents both data
and processes).

The rest of this paper is organized as follows: In Section 2,
we define SEAM. The mapping from SEAM to abstractions
supported by current RDBMSs is presented in Section 3. In
Section 4, we illustrate, with a simple prototype application,
how SEAM can be used to construct a workflow application
using an existing RDBMS, and also discuss how it compares
with other models. In Section 5, we conclude with a
discussion of the contributions of this work and directions
for future research.

2 THE STATE-ENTITY-ACTIVITY-MODEL (SEAM)

First, we present the intuition behind creating SEAM. Our
design philosophy was to create a model that captures data
and processes in well-understood ways. Hence, data in
SEAM is based heavily on the ERM, which is a well-
understood model in the academic and practitioner com-
munities. Data in SEAM is captured using the notion of

entity_types and state_types. Both have attributes, and
entity_types have a primary_key susbet of attributes. Each
instance of an entity_type and a state_type has time stamps
associated with it, which fix its existence in time.
Entity_instances from one or more entity_types belong to
state_instances (instances of state_types). The issue of
temporal consistency, so that the entity_instances that
belong to a state_instance do not differ by more than a
certain time interval, is handled by the max_interval value
of the state_type.

Processes in SEAM are modeled using a simple activity
decomposition model that is similar to models like the data
flow diagram model [43], which is a well-understood process
model. Activity_types in SEAM can be decomposed down to
the level of primitive activity_types. Each activity_type
acts_on a state_type (and the entity_types that belong to the
state_type). Primitive activities are further described using a
verbal description, similar to mini specs in the data flow
diagram model.

SEAM differs from other models in that, first, it explicitly
links activities and data, thus enforcing one consistent view
of reality. Second, it introduces temporal concepts in a
workflow model, which we believe is novel. Third, SEAM is
formally defined in this work, thereby allowing the
construction of software that can be used to manage
workflows from the SEAM level. In Section 5, we discuss
in greater detail the differences between SEAM and other
modeling methods.

Now, we define the components and semantics of SEAM
using set theory in Section 2.1. Fig. 2 lists many of the
symbols we use. Next, SEAM is specified as a context-free
grammar in Section 2.2. A graphical notation to depict
SEAM is defined in Section 2.3. An example, taken from a
real-world case study to illustrate the usage of SEAM is
shown in Section 2.4.

2.1 The Definition of SEAM
2.1.1 Entity_types and Entity_type Descriptors in SEAM

Entity_type. An entity_type is a set of entity_instances, each
of which is described by the same set of mappings (entity
descriptors):

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XX, XXXXXXX 2001

E: an entity_type

e: an entity_instance

S: a staté_type

S: a state_instance

A: an activity_type

a: an aclivily_instance

W: a workflow_type

w: a workflow_instance

E: the sct of all cntity_types in a SEAM scheme
S: the set of all state_types in a SEAM scheme
A the set of all activity_types in a SEAM scheme
R™: set of positive real numbers

Fig. 2. Symbols used in the SEAM specification.

Entity_Attribute. An entity_attribute is a functional
mapping from an entity_type into a value set or a
Cartesian product of value sets:

Eat: E; — Vior Vi XVipX ... XV,

Entity_time_stamp. The time_stamp of an entity_instance
fixes its location in time (relative to the start of the workflow).
It is defined as a functional mapping of an entity_type to the
value set consisting of positive real numbers:

ets : B; — Vj; where V;; = {x|x € R"}.

Primary_key. Each entity_type has at least one minimal
subset of entity_attributes, say, P, such that the mapping
from this subset to the Cartesian product of the correspond-
ing value sets is a one-one mapping. The primary key for
the entity_type is given by:

PUets (E;).

2.1.2 State_types and State_type Descriptors in SEAM

State_type. A state_type is a mathematical relation
between n entity types. It is defined as an n-tuple of
these entity types, with the constraint of temporal
consistency: The time_stamps of all the entity_instances
that belong_to a state_instance, as well as the time_stamp
of the state_instance, should fall within a particular
length of time:

Si:{[€17627~-7en]|61 S El,eg S E1,€2 S Ez,..
E, AV j=1...n,sts(s;) — ets(e;) <= +/ — smi(s;)}.

ey €

We say that E, . .., E, belong_to state_type S;. Each tuple of
the state_type relation is a state_instance.

State_attributes. A state_attribute maps from a state_type
into a value set or a Cartesian product of value sets:

Sat :S; — Vior VyXVpX ... XV,

State_time_stamp. The state_time_stamp fixes the loca-
tion of a state_instance in time (relative to the start of a
workflow). It is defined as a functional mapping of a
state_type to a value set consisting of positive real numbers:

sts: S; — Vi; where V;; = {x]x € R'}.

Max_interval. The max_interval for a state_type is the
length of the temporal interval within which the

entity_time_stamps of all entity_instances, as well as the
state_time_stamp of the corresponding state_instance
have to fall, so that the state_instance represents a
temporally consistent view of reality. It is a functional
mapping from a state_type to the value set V;:

smi: S; — V,; where V;; = {z]x € R"}.

2.1.3 Activity_types and Activity_type Descriptors in
SEAM

Activity_type. An activity_type is a transformation that maps
from a state_type to the state_type itself. It is an ordered
binary relation on the state_type, where the binary relation
represents the possible initial and final state_instance pairs
that can occur, for an activity_instance of the activity_type:

A; = {sj,,s, € Si|s; is transformed to s; following a
predefined logic of A; : [s;,, s, |}

Each element a,, € A; is a tuple in this ordered, binary
relation. We say that A; acts_on ;.

A_Type. The a_type of an activitytype describes
whether the activity_type is fully automatable, nonautoma-
table, or mixed. A mixed activity_type is one whose
sub_activity_types are either automatable, nonautomatable,
or mixed. A_type is a functional mapping from an
activity_type to the set set

V.. = {automatable, nonautomatable, mixed}.

If a;(a;,) =" automatable,” then a,, has to be a functional
relation:

at : A; — V.

2.1.4 Workflow_types in SEAM

In SEAM, a workflowtype is defined as every
activity_type that occurs at the highest level of a SEAM
scheme. The activity_instances of the activity_type are
the workflow_instances. We say that all the component
activity_types of a workflow_type participate_in the
work flow_type.

2.1.5 Cardinalities

Similar to the ERM, the cardinality of a state_type is a
constraint on the mappings from one entity_type that
belongs_to the state_type, to all other entity_types that
belong_to the state_type. Thus, a 1 to n mapping means that
each entity_instance in the second entity_type can only
belong_to a state_instance with one entity_instance of the
first entity_type.

2.1.6 Decomposition and Precedence in SEAM

State_type Decomposition. A state_type can be decomposed
into two or more state_types that describe it in more detail.
State_type decomposition is defined as a relation between
two state_types, where the first is a component of the
second:

sdc C 57 x Ss.

We say that S, superstate Sy iff S; sdc Sy Vv S; = S2.
Activity_type Decomposition. An activity_type can be

decomposed into two or more activity_types that describe it

in more detail. Activity_type decomposition is defined as a

BAJAJ AND RAM: SEAM: A STATE-ENTITY-ACTIVITY-MODEL FOR A WELL-DEFINED WORKFLOW DEVELOPMENT METHODOLOGY 5

relation between two activity_types, where the first is a
component of the second:

ade C Ay x Ay

Aj ade A, iff 351, S5 such that A; acts_on S; A Ay acts_on
Sy A Sy sde Ss.

We say that A, superactivity A, iff A; adcAs vV A; = As.

Entity_type Abstractions. SEAM supports the well-
known entity_type abstractions of generalization and
aggregation. These abstractions have been defined and
extensively discussed in the literature [44], [45], [46].

Generalization occurs when similar entity_types are
abstracted to form a higher-order, generic entity_type. Let
all the entity_atributes of an entity_type E; be Attr;. From
the definition of entity_types earlier, the entity_type E; has at
least one minimal subset of Attr;, say, P,, such that the
mapping from this subset to the Cartesian product of the
corresponding value sets is a one-one mapping.! We define
generalization as follows:

Ey sub_class_of FEs iff Py = Py A\ Attry C Attry.

Aggregation occurs when two or more entity_types and the
state_type that they belong_to are abstracted to form a
higher level entity_type. We define aggregation as follows:
A state_type S, and all the entity_types Ei,..., E, that
belong_to state_type S; form an aggregate entity_type

Eoygr => Poggr = (PAURU...UP,) A Attraggr
C Attrg) A ets(Eqggr) = sts(S1).

2.1.7 Decomposition Primitives

A state_type S) is a primitive state_type if it does not have
any component state_types in the SEAM scheme. Thus, S is
a primitive state_type iff only one entity _type E; belongs_to
S1 Vv =3 state_type S; such that S, superstate S;.

An activity_type A; is a primitive if it does not have any
component activity_types in the SEAM scheme. Thus, A4, is
a primitive iff -3 A; such that A; superactivity A;.

Each primitive activity type is further described by a
pseudocode of operations on the descriptors of the
state_type that it acts_on, and the entity_types that belong_to
that state_type.

This is exactly analogous to the practice of using
minispecs in process models like the Data Flow Diagram
[43], and is used to complete the description of the primitive
activity_types. Note that this pseudocode is not part of the
SEAM specification, but is an add-on that can help in
application construction.

2.1.8 Precedence

Precedence is defined as a relation between two
activity_types:

precedes C A x A.

A; precedes A; iff Ywy,a; € A; Naj € Aj A a; participa-
tes_in wi Aa; acts_on s, = sts(a;(s;)) < sts(s,,), where
a;(s;) represents the state_instance after a; has acted_on s;.

1. In a nontemporal model, this would be the primary key of the
entity_type.

2.1.9 Axioms and the Construction of SEAM Schema
Axioms. In order to make every SEAM scheme logically
consistent, we define the following axioms:

1. Entity Generalization Axiom. V E;,, E;, Si, E;
sub_class_of E; N\ E; belongs_to Si, = E; belong_to Sy,
2. State Decomposition Axioms.

a. VS, S;, A, S; superstate S; AN A; acts_on S; = A;
acts_on S;.

b. Sy sdec Sy = (VE;, E; belongs_to Sy = (E; be-
longs_to S5)).

3. Activity_type Decomposition Axiom. V A4;, A;, Ay,
Ay, A; superactivity Aj; N Ay superactivity A, N A;
precedes A = A; precedes A,,.

The Construction of SEAM Schema. Each SEAM schema
consists of different levels. Each level consists of a static
scheme and a dynamic scheme. The static scheme depicts the
state_types, entity_types, and activity_types, along with their
descriptors. The dynamic scheme depicts the sequencing of
the activity_types depicted in the static scheme, along with

predicates.
A static scheme is defined as a 5-tuple

St; = [0, acts_on, belongs_to, sub_class_of, aggregate_of],

where O C EUA US is a nonempty, finite set of compo-
nents consisting of pairwise disjoint sets: E, the set of
entity_types, S, the set of state_types, and A, the set of
activity_types;

1. actscon C A X E;

2. belongsto CE x S;

3. subclassof CE x E;

4. aggregate_of CE x E.

A dynamic SEAM scheme is defined as a 2-tuple
Dy; = [A, precedes].

St; is lower_than St; iff

e VYV Aj;in St;, 3 A;in St;, such that A; superactivity A; A
e V S;in St;, 35; in St; such that S; superstate S;.
Dy; is lower_than Dy; iff

e VYV Ajin Dy;, 3 A; in Dy;, such that A; superactivity A;.

2.2 Defining SEAM Schema as a Context-Free
Language

We define the set of all possible SEAM schemas as a context

free language [47], defined by a nonambiguous, context-free

grammar G. The grammar is presented in Fig. 3.

2.3 The Graphical Representation of SEAM

SEAM is a conceptual workflow model that can be used to
capture the users’ descriptions of their business realities.
SEAM schemas are created using graphical symbols (that
correspond to the components of SEAM). The graphical
symbols we use in SEAM, and the components they
represent, are shown in Fig. 4. Next, we present a simple
example to illustrate how SEAM can be used to capture user
requirements.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XX, XXXXXXX 2001

G =[S, T,V,P] where S is the start symbol;

T is a set of terminals;
V is a set of non-terminals;
P is a set of production rules.

S = model
T =

aggregate, model}
P={
model

static_scheme

subclass
aggregate
dynamic_scheme :

entity_type

primary_key

state_type

activity_type

}

a_type

Extended Backus-Naur Form notation is used to define the grammar. For the sake of clarity, nonterminals
are shown in italics while terminals are in boldface and, in some cases, put in quotes for clarity.

{entity_attribute, entity_time_stamp, e_type, sub_class_of, aggregate of, state_attribute,
state_time_stamp, max_interval, a_type, belongs_to, acts_on, precedes, lower_than, ¢,”}
V = {entity_type, primary_key, activity_tvpe, state_type, static_scheme, dynamic_scheme, subclass,

static_scheme
| static_scheme
state_type | entity_type | activity_type acts_on state_type
| entity_type belongs_to state_tvpe

| subclass | aggregate | {static diagram)™

entity_type sub_class_of entitv_type

entity_type aggregate_of entity_type

activity_type | activity_type precedes dynamic_scheme

{entity_attribute}” ¢’ entity_time_stamp ’,’ e_type
>y primary_key

{entity_attribute}*

{state_attribute}” <,
max_interval

*, dynamic_scheme

*,” dynamic_scheme lower_than model

state_time_stamp ¢,

Fig. 3. Context-free grammar for the SEAM model.

Entity L]
state]
A ctivity A

S

\‘/D

Descriptor

Component_of
(State_type and
Activity _type

decom position)

Fig. 4. Constructs in SEAM.

2.4 An Example SEAM Scheme

This example is part of an actual case study that has been
conducted where the SEAM schema was created for the
workflows of the quality control unit of a medium sized
international software development company headquartered
in the USA [48]. The case study took three months and
involved the intensive participation of four employees of the
unit, representing the four different job functions of that unit.
For reasons of space, we show a subset of the SEAM schema

belongs to 1
with cardinality

acts on

sub_class_of \LSUbClass
aggregate_of \Laggregate
Sequencing E—

obtained for the company. We show a SEAM scheme for the
following situation: In a software development process, the
design specification document (DSD) is created before coding
begins. Members of the following departments participate in
this creation: implementation (IMP), customer services (CS),
technical publications (PUB), development (DEV), marketing
(MKTG), and quality control (QC). The QC department
consists of a director, several managers, senior analysts, and
testers. The DEV department consists of a lead developer and

BAJAJ AND RAM: SEAM: A STATE-ENTITY-ACTIVITY-MODEL FOR A WELL-DEFINED WORKFLOW DEVELOPMENT METHODOLOGY 7

d
<

sub_class_of

MK emps|

LY &
/ _ngr
MP_
emps | sub_class of
CS_emps
Code
sub_class_of
sub_class_of
DEV_
programimers
Lead DEV
DSP
Activity

Fig. 5. Level 1 static scheme of DSD Construction.

programmers. The MKTG department includes (among other
employees) product managers (PM), one of who participates
in the DSD construction process. IMP consists of several
managers and employees. While the DSD is being developed,
DEV may sometimes demonstrate prototypes of the final
system. Prior to developing the DSD, the product planning
document (PPD) has already been created. In the final phases
of DSD construction, QC starts developing an initial test plan
document that sets forth testing plans and criteria for the new
system. At this time, QC also identifies any special require-
ments they may have for testing the new system. The
construction of the DSD proceeds in the form of meetings
between all of the parties. At a certain point, the preliminary
DSD code is approved, and the coding and unit testing (CUT)
starts. At this point, all code is written and the units are
individually tested. After all the code has been written, the
functional integrated testing of the code (FIT) starts. The DSD
may be modified during the CUT phase, and appendices may
be added to it in the FIT phase.

A simplified SEAM scheme for this situation is shown in
Figs. 5,6, 7,8, and 9. The purpose is to illustrate SEAM usage;
a SEAM scheme for a real-life system to support this process
would be considerably more complex. Descriptors and cardin-
alities are not shown for reasons of legibility. Fig. 5 is the
top-level static scheme and shows the workflow_type
“DSP activity.” Note how the departments are modeled
using the generalization concept, just as in the Extended
ERM. There is no dynamic scheme at the top level, since
there is only one activity_type (the work flow_type).

At the second level, shown in Fig. 6, the state_type
“DSP_state” is decomposed into three state_types:

QC_ Q. & e
director mor tester
Analyst -

1. “design_group,”
2. “develop_DSD,” and
3. “initial_test_plan_state.”

The decomposition relation between state_type “DSP _state”
and these three state_types is not shown for reasons of
legibility. The workflow_type “DSP activity” has been
decomposed into five activity_types:

“develop_dsd_activity,”
“meet_activity,”
“provide_feedback_on_DSD,”
“develop_plan,” and

5. “list_special_requirements.”

L=

The level 2 dynamic scheme in Fig. 7 shows the sequence of
these activity_types.

In level 3, shown in Fig. 8, the activity_type “devel-
op_DSD_activity” is decomposed into four activity_types.
The sequence of these four activity types is shown in the
level 3 dynamic scheme in Fig. 9. Note that the dynamic
schemes at levels 2 (Fig. 7) and 3 (Fig. 9) will need to be
superimposed to get the complete picture since only new
decompositions are shown at each lower level.

The primitive state_types in this example are: “de-
sign_group,” “initial_test_plan_state,” and “develop_DSD.”
The primitive activity_types are: “develop_plan,” “list_spe-
cial_requirements,” “meet_activity,” “provide_feedback_-
on_DSD,” “approve_DSD,” “draft_preliminary_DSD,”
“approve_DSD,” “modify_DSD_CUT_phase,” and “add_ap-
pendices_DSD_FIT_phase.” Itis relatively straightforward to
conceptualize further decomposition beyond these three
levels. We also do not show the pseudocode for any of the

V7T

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,

Suf% IVP_mgr

VOL. XXX, NO. XX, XXXXXXX 2001

sub_class_of sub_class_of
/u‘hc{sfs‘ub_class_o sub _class <

IMP_emps|
develop_
DSD
sub_class_of /™ V sub,class.of
Other Codg |P10l0typ={
meet_
CS enps activity
DEV. desi
PUB_enps ﬂ Sigh
sub_class_of f \subfclassﬁof -growp
MK enpq Lead DEV DEV_
progranumers
sub_class_of
PM
develop
_plan
initial_
Other test_plan
Documents
QC_emps

QC Q. QC Q_
director manager Sr.Analyst tester
Fig. 6. Level 2 static scheme for DSD Construction.
develop - rovideX - @ develoy
dsd_ 7/ feedback Y "/ activity _plan
on_DSD

activity

Fig. 7. Level 2 dynamic scheme for DSD Construction.

primitive activity_types since that is not part of the SEAM
specification. However, this would almost certainly be
required for completing the documentation in a real-life

application.
Having described how user requirements can be

captured in a SEAM scheme, we next complete the link
shown in Fig. 1b by defining a concise set of rules to map
the SEAM schema to abstractions supported by commercial
RDBMSs: The relational data model, triggers, a computa-
tionally complete (possibly embedded) SQL (Structural
Query Language), and the ACID (Atomic, Consistent,
Isolated, Durable) transaction model for execution, con-
currency and recovery.

3 MaPPING SEAM ScHEMA TO WIDELY
SUPPORTED ABSTRACTIONS

In the following discussion, we shall refer to relations in the
relational data model as “tables,” and to the well-known
foreign key concept as “referencing.” In order to apply these
rules to a particular workflow, the term wf_name should be
substituted for the actual name of the work flow_type.

3.1 Rules to Map SEAM Schema
1. Metadata Associated with Each Workflow_type.
a. Each workflow_type has a table,

wf name_wf_info,

BAJAJ AND RAM: SEAM: A STATE-ENTITY-ACTIVITY-MODEL FOR A WELL-DEFINED WORKFLOW DEVELOPMENT METHODOLOGY

sub_class_of

\ub_class_of

Prototype

Other Codg

CS_enmpq

emps j
W sub_class of develop_ |
subfclzssfo¢ \ DSD
Lead DEV DEV_
programmers
PUB_enps

draft pre
i

add_appendices
DSD_HIT phase

QC tester

Fig. 8 Level 3 static scheme for DSD Construction.

draft pre
liminary
DSD

Approve
DSD

appendice
DSD_FIT_
phase

Fig. 9. Level 3 dynamic scheme for DSD Construction.

with the following attributes:

(wf_description, wf_id, wf_time_began).

The primary key for this table is wf_id.

A table called wf _name_activities_info is used
to record information about all the possible
primitive activity_types that participate_in the
work flow_type. The table has the following
attributes:

(activity_description, activity_id).
The primary key is activity_id.
A table called wf _name_state_mazx_ints is used
to record the max_intervals of all the state_types.
It has the following attributes:

(state_max_int_id, state_name, timel, time2).

The primary key is the state_max_int_id.

d. A table called wf_name_progress is used to
coordinate the workflow. It has the following
attributes:

(activity_id, wf_id, activity time_began,
activity_time_ended, completed_status,

executing_status).

The primary key of the table is (wf_id, activity_id).
The wf_id references the wf_name_wf{_info table,
while the activity_id references the wf_name_ac-
tivities_info table.
Mapping SEAM Entity_types. Each entity_type is
represented as a table, whose attributes are the same
as the entity_type’s descriptors. The primary key of
the table is the primary key of the entity_type (Which
includes the entity_time_stamp). Since current sys-
tems do not support temporal data, time_stamps
have to be explicitly modeled as attributes in the
table, and each table represents values across time
for different entity_instances.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XX, XXXXXXX 2001

Mapping SEAM Subclass Entity_types and Aggre-
gate Entity types. The mapping from subclass
entity_types and aggregate entity_types to the rela-
tional data model has been extensively covered in
the literature, and is identical to the mapping of
SEAM subclass and aggregate entity_types. For
reasons of space, we do not discuss the mapping
here, but refer the reader to [49].

Mapping SEAM State_types. Nonprimitive
state_types are not mapped. Each primitive
state_type is represented by a table. The attributes of
the table include: (state_attributes, state_time_stamp,
(primary keys—entity_time_stamp) of all entity_types
that belong_to the state_type).

In addition, the table has attributes: (state_ty-
pe_id, state_max_int_id, wf_id1, activity_id1... acti-
vity_idn, wf_id2, activity_id1,..., activity_idp,
.wi_idm, activity_idI,... activity_idg). Thus, attri-
butes exist for each work flow_type that acts_on the
state_type, and within that, for each activity_type that
acts_on the state_type and that also participates_in
the work flow_type.

The primary key for the

table = state_type_id U state_time_stamp.

The reason is that, like entity_instances in the
entity_type tables, state_instances are also repre-
sented across time.

The state_max_int_id references the

wf_name_state_max_ints

table, the wf_id references the relevant
wf_name_wf_info,

table, and the activity_ids reference the relevant
wf_name_activities_in fo table.

Generic Triggers to Enforce SEAM Reality. We
identify only the essential triggers that are needed to
implement the SEAM conception of reality. In
addition, of course, there may be several applica-
tion-specific triggers, which are not discussed here.

a. Triggers to guarantee temporal consistency of
data. Foreign keys are insufficient by themselves
to guarantee temporal consistency, since they do
not check to see if the referenced value falls within a
particular range of the referencing value. Hence, we
need triggers to ensure temporal consistency.

e FEach state_type table has an insert
trigger associated with it, to ensure that
entity_instances exist whose time_stamps
lie within the max_interval of the sta-
te_time_stamp value. The logical struc-
ture of this trigger is shown in Fig. 10a.

e Each entity_type table has a delete trigger
associated with it. The trigger ensures that if
an entity_instance is deleted, then the tables
of all the state_types to which the entity_type
belongs are checked. If any state_instances
arefound thatdepend on this entity_instance,

and for which no other entity_instance can be
found, then those state_instances must be
deleted as well. The logical structure for this
trigger is shown in Fig. 10b.

b. Workflow Initiation Trigger. This is associated
with insertions into the wf_name_wf_info table.
When a row is inserted into this table, it means
that wf_name has been instantiated. This trigger
then inserts all activity_types that participate_in
the workflow_type in the wf_name_progress
table, and marks them as incomplete. The
logical structure of this trigger is shown in
Fig. 10c.

Mapping SEAM Primitive Activity types. If the
a_type of a primitive activity_type is nonautomata-
ble, it may be written as a form.? If it is automatable,
it is written as a trigger. Each primitive activity_type
in the SEAM scheme may be written as an
embedded SQL module of the form:

activity_name () {
get_input () ; /*ask the user for
possible input that may be
required
if it is non-automatable*/
start_transaction() ;
/ *
identify relevant row in the
state_type table based on
state_time_stamp and
transform only the
entity_instances that lie
within +/- max_int of the
state_time_stamp value. After
relevant entity_instances are
modified, insert a new row in
the state_type table that has
the same wf_id and activity_id
as the original row
*/
update_wf_progress(); /*
updates the relevant record
in the wf_name_progress
table, that the activity has
been completed*/
commit_transaction();

}

This structure implies that each primitive
activity_type is one transaction. It also supports the
SEAM conception of reality: An activity_instance
acts_on a state_instance and all the entity_instances
that belong_to that state_instance. The common
wf_id and activity_id in the state_type table are
sufficient enough to generate the state_instance that
was input to the activity_instance, as well as the

2. A form is an event driven interface into the database, which allows
end-users access to the data. Many fourth generation languages are widely
available to create forms to a database.

BAJAJ AND RAM: SEAM: A STATE-ENTITY-ACTIVITY-MODEL FOR A WELL-DEFINED WORKFLOW DEVELOPMENT METHODOLOGY

Trigger check insert state temporal consistency

identify entity_instances in the entity type tables that fall
within +/- max_int of the state_time_stamp of the inserted row
if none found then rollback transaction

(a)

Trigger check delete entity temporal consistency
for each state_type table to which entity_type belongs

identify all state_instances whose time_stamps are within +/-
state_type’s max_int of the state_instance’s time_stamp

if any are found then
scan the entity_type’s table to see if another entity_instance

temporal consistency requirement
if none found then delete the state_instance

(b)

Trigger insert activites initiate workflow

Insert all possible primitive activity_types in the wf_progress table
Values for time_begun, time_ended as NULL
Values for completed_status = NO

(©)

can be found whose time_stamp satisfies the state_instance’s

11

Fig. 10. The logical structure of generic triggers in WF-M. (a) Logical structure of insert trigger associated with each state_table. (b) Logical structure
of delete trigger associated with each entity_table. (c) Logical structure of insert trigger associated with wf_name_wf_info table.

state_instance after the activity_instance has trans-
formed it.

7. Mapping SEAM Nonprimitive Activity_types. Non-
primitive activity_types in SEAM are not relevant at
the implementation level. Similar to other tools like
the DFD, nonprimitive activity_types in SEAM serve
as a software design aid for decomposing
activity_types, until primitive activity_types that can
be coded are reached, e.g., the develop_DSD
activity_type will not be supported at the implemen-
tation level. However, it was useful in arriving at the
four primitive activity_types shown in Fig. 9.

8. Managing the Instantiation of SEAM Work-
flow_types. Each workflow_type is managed by a
server program (wf_name_server) whose structure
is as follows:

main() {
while(1l) {
decide_next_activity () ;
/*scans the
wf_name_progress table,
and picks out an
activity_type that needs to be
executed*/
execute_activity_handler () ;
/*a wrapper function that
accepts the handle of the
next activity to be
executed, forks a process
to execute it &
immediately returns
SUCCESS or FAILURE*/
}
}
wf_name_server runs continually. The decide_nex-
t_activity function scans the wf_name_progress table,

sees which activity_type has been most recently
executed, and understands which activity_type

needs to be executed next.’ This information is
passed to the execute_activity_handler, which will
simply fork a process to execute that activity_type’s
module and return.

3.2 Workflow Execution, Recovery, and
Concurrency Issues

Fig. 11 shows the architecture of a WEMS that can be
constructed using SEAM. For each workflow_type,
wf_name_server runs continually. A workflow_instance
starts when a row is inserted into the wf_name_info table.
This triggers the workflow initiation trigger (in Fig. 10c),
which inserts relevant rows in the wf_name_progress table.
wf_name_server scans this table continually, and decides on
the next primitive activity_type to be executed. When an
activity_type is found, it forks a process for the activity and
returns. Note that each activity_type is written as one
transaction. This utilizes the ACID transaction abstraction
to ensure recovery from a crash. If the system crashes
when a workflow is in progress, the current executing
activities are all rolled back (automatically by the DBMS),
since they are written as transactions. Since the
wf_name_progress tables have not been updated (they
are the last table an activity-instance updates), they
remain marked NOT COMPLETE. When the system is
restarted, only the wf_name_server needs to be restarted
for each workflow_type. The rolled back activity_types are
then automatically handled by the servers.

In order to facilitate recovery, information on all
wf_name_server programs may be stored in a
wf_server_registry (metametadata). On recovering from a
crash, a recovery program could scan this table and start all
the servers running again.

Using the transaction abstraction provides the same
degree of concurrency to activitytypes that the DBMS
provides to transactions. The key is to decompose

3. There are several ways to implement this. One possible way would be
to write a function for each activity_type that participate_in the
work flow_type, that returns true if the activity_type is ready for execution.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XX, XXXXXXX 2001

Reslarts
- .
Recovery Manager | WF_Server_Registry
Maintains listing of
WEF_Server A WF_ServerB |
New workflow is initiated
Scans
; Y

WF_Name_Info

» WF_Name_Progress

Insert Rows

Transform

Forks

» Activities

Fig. 11. Architecture of the proposed WFMS.

activity_types so that, finally, each primitive activity_type is
of “reasonable” duration (i.e., not too long) and can be

implemented as a transaction with a reasonable

degree of

concurrency in the system. SEAM clearly helps in this

process by facilitating decomposition.

4 PROTOTYPE WORKFLOW APPLICATION

Next, we describe a prototype application that we con-
structed for a SEAM schema. The prototype was developed
on Sybase 10 [37], a client-server database management

system developed by SYBASE.

Sybase 10 largely supports the relational model, triggers,

embedded SQL code, extended SQL, as well

as stored

procedures. The aim of implementing the prototype was
not to implement a real-life application, but rather a proof-
of-concept demonstration, to show how a real application
can be developed. The top-level static SEAM schema used is
shown in Fig. 12. There is one entity_type: employees, and

one state_type: the DSP state. Two activity_types

transform

the DSP state and employees. The first activity_type is called
Activity 7, and this increases the salary of an employee by
10 percent. It takes between two and four minutes to
execute, depending on the system load, and requires input
from the user. The second activity_type is called Activity 8,
and gets the ID of the employee whose salary was
increased, and prints out a message to the user. It also
takes between two and four minutes to execute, depending
on system load. The workflow consists of these two
activities executing sequentially. In the prototype, the
employee_id represents shared information between the

two activities in the work flow_type. Information

is shared

by passing along the workflow_id of the work flow_instance
to each activity_instance. Based on this, it can obtain all the
tuples that were accessed by previous activity_instances in

the same work flow_instance.

Next, we applied the mapping rules presented in

Section 3 to implement this SEAM schema. The

relational

Y

Data

schema and the constraints on the relational schema (in
terms of primary and foreign keys) were derived. The
relational schema implemented for the prototype is shown
in Fig. 13. The triggers (and stored procedures) that were
used to impose SEAM’s axioms on the prototype schema
were coded next, based on the mapping rules described in
Section 3. The programming language Transact-SQL, which
is part of the Sybase 10 system, had sufficient features to
create these triggers.

Next, the code for the two activities and the code for the
dsp_server (the workflow server) was written. The build
environment for the activities and dsp_server was created.
The code was written in C with embedded SQL calls.

The execution pattern of the prototype is shown in
Fig. 14.

The prototype was tested as follows: Triggers were
tested by inserting good and bad data (data that violated
SEAM axioms) into the tables. An example of bad data is
inserting state_instances where temporally consistent
entity_instances do not exist. The check_insert_state_tempor-
al_consistency trigger prevented insertion of this data. The
check_delete_entity_temporal_consistency trigger was tested
by deleting entity_instances and then verifying that all
state_instances that were dependent on only that
entity_instance for temporal consistency were deleted.
The insert_actvities_initiate_workflow trigger was tested
by inserting a row in the dsp_info_table and then verifying
that rows for primitive activity_types Activity 7 and
Activity 8 were created in the dsp_progress table.

The actual workflow (consisting of a sequential execu-
tion of the two activities) was executed several times. Each
workflow_instance was inititated by inserting a row into the
dsp_wf_info table. Several workflow_instances were thus
created, and the resulting tables were examined. In all cases,
the processes were forked and the triggers worked as
intended. Thus, the prototype showed that existing
RDBMS platforms offer sufficient abstractions to allow the
implementation of a WEMS system using SEAM.

BAJAJ AND RAM: SEAM: A STATE-ENTITY-ACTIVITY-MODEL FOR A WELL-DEFINED WORKFLOW DEVELOPMENT METHODOLOGY 13

, G

Employees

DSP_state

Activity 7 Activity 8

Fig. 12. SEAM schema for the prototype construction.

EMPLOYEES (emp id, time stamp, salary, address)

DSP_STATE (emp id, time stamp, state_max_int_id, actl_id, act2_id, dsp_wf_id)

DSP_WF_INFO(wf desc, wif id, wf time_begun)

DSP_ACTIVTITES_INFO(act _id, act_desc)

DSP_STATE_MAX_INTS(state_max_int_id, state_name, datel, date2)

DSP_PROGRESS(act_id. wf_id. time_began, time_ended, completed, executing)

Fig. 13. Relational schema for the prototype.

Insert Tuple in
dsp_wf_info

'

Trigger Inserts 2
tuples in dsp_progres

!

dsp_server scans dsp_progress
and forks any activities that are not
completed and not executing

|

Activities transform data.
Information between activities is
shared using dsp_wf_id.

Fig. 14. Execution pattern of the prototype.

While the prototype used a simple example, it is valuable RDBMS. The prototype covers most of the concepts we
because it demonstrates the end-to-end methodology, of anticipate would be required for building a large workflow
taking a SEAM schema, at the conceptual level, and application, using the SEAM methodology, on a commercial

implementing it as a workflow application on a commercial relational platform.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XX, XXXXXXX 2001

4.1 Lessons Learned about Use the SEAM

Methodology in Real-World Situations

We conducted a three month long case study in the quality
control unit of a medium-sized software development
company based in the USA [50]. There were four job functions
in the unit, and the study involved the active participation of
four employees, one from each function. At the end of the case
study, we had a SEAM diagram of the workflows of the unit.
Thirteen levels of decomposition were created. In all, there
were 55 entity_types, 60 state_types, and 76 activity_types. A
subset of these diagrams has been shown in Figs. 5, 6,7, 8, and
9. Based on our experience with the case study and the coding
of the prototype application, next we summarize important
points for developers who choose to use the SEAM
methodology.

From the perspective of the organization, first, SEAM
provided, in one diagram, a documentation of the processes
and the data. According to the employees who participated
in the case study, this was preferable to using several
different diagrams and manuals. Second, the decomposi-
tion in SEAM meant that different levels of abstraction
could be represented for processes, making a SEAM
diagram suitable for display for a variety of levels of
management. Third, participating in the creation of a SEAM
schema clarified their own workflows for the employees,
and increased their knowledge of their own unit.

From the perspective of the modeler, SEAM required a
lot of effort to use, as compared to simpler diagrams that
represent either data or processes. It took longer to both
learn how to use SEAM and to actually create the SEAM
schema. Thus, it took three weeks to create the
SEAM schema, whereas it took only one week to create an
IDEFO [51] schema, which only models processes, for the
organization, using the same modeler. However, the
consistency between data and processes inherent in SEAM
makes it easier, in the opinion of the modeler, than creating
separate data and process models, and trying to make them
consistent.* Thus, developing one SEAM schema is more
scalable than developing separate, consistent schemas in
other modeling methods.

SEAM captures information on activity_types at the
conceptual level, using verbal descriptions similar to
minispecs. There are other models that capture activity
logic formally, and are thus similar to programming
languages. Based on this case study, we note that extending
SEAM to formally capture the detailed logic of each
primitive activity_type would have resulted in far more
complex schemas, and seriously affected the scalability of
SEAM when modeling real-world requirements.

One important quality in a conceptual model is
completeness, which is the degree to which the model can
represent the real-world domain, as perceived by the
humans in the domain. The completeness of SEAM was
formally evaluated as part of this case study [48], and
SEAM was found to be more complete than the IDEF0
model.

4. An example of such a consistency check would be: flows in a data flow
diagram have to be represented as data in the data diagram, and all data in
the data diagram has to be represented as a flow in the dataflow diagram.

Lessons from implementing the prototype are, first, the
coding of triggers to enforce the temporal model and the
workflow server, (shown in Fig. 10) is initially tedious. This
is because it has to be done for each entity_type and
state_type. However, we find that it becomes fairly routine
after creating the first set of triggers. We anticipate that any
development team choosing to use SEAM will need to
quickly establish a template for coding these triggers.
Second, the actual implementation on an RDBMS platform
is relatively simple, once the design is complete. The SEAM
diagram serves as an adequate documentation for the
workflow system. Thus, this work provides a well-defined
methodology for constructing workflow applications, as
shown in Fig. 1b.

4.2 Comparing SEAM to Other Models

As mentioned in Section 1, several conceptual models exist
to model systems. In this section, we compare SEAM to two
popular models: the Software Requirements Engineering
Methodology (SREM) [52] and to the Systems Analysis and
Design Technique (SADT) [53], [54]. These two models are
fairly representative of two broad classes of software
engineering tools. SREM models system behavior at low
levels and in great detail, while SADT is a higher level
conceptual model that model activities and data.

SREM along with the Systems Requirements Engineering
methodology (SYSREM) is used to model systems from a
higher level of abstraction to a state machine level. SYSREM
uses time functions which have inputs, outputs, invariants,
completion criteria, and performance. Each time function
lasts a finite period of time. It can be decomposed into
concurrent and/or sequential activities. At the lowest level,
each activity can be modeled as an R-net, which is a graph
with several different node types that model the abstrac-
tions found in programming languages. R-nets in turn are
just one of 21 elements that constitute the Requirements
Statement language (RSL). This language allows the
specification of all the functions of a system, as well as
the conditions under which each one occurs. It also allows
the specification of performance criteria and provides for
verification of data flow consistency. Table 1 compares
SEAM with SREM/SYSREM.

The SADT methodology is representative of a large class
of conceptual models that have been used in systems
analysis. The SADT technique also spawned the IDEF0
model [51]. The SADT technique focuses on activity
diagrams. Activities are boxes, which can be decomposed
into subactivities. Arrows represent the inputs, outputs,
controls, and mechanisms for the execution of activities.
The decomposition of activities is formally defined to
ensure preservation of input and output data, but the
decomposition of arrows is informal. SADT stresses com-
munication between the developers, analysts, and the
customers, when capturing system requirements. Table 2
compares SADT and SEAM.

SEAM appears to successfully bridge the conceptual
modeling and implementation layers of workflow applica-
tion development. Many of the SEAM implementation level
concepts (such as time stamps) are not used when
conceptually modeling requirements. Based on our experi-
ence with using SEAM in a real-world situation, at the

BAJAJ AND RAM: SEAM: A STATE-ENTITY-ACTIVITY-MODEL FOR A WELL-DEFINED WORKFLOW DEVELOPMENT METHODOLOGY

TABLE 1
Comparison between SEAM and SYSREM/SREM

SREM/SYSREM

SEAM

Used primarily to specify any system, at a high level

(SYSREM) and a low level (SREM)

Used to conceptually model requirements for
business workflows at a high level, similar to data

and process conceptual models.

Captures precedence and concurrence at higher
levels (SYSREM) , and models behavior in great
detail at lower levels (SREM)

Models precedence of activities, and supports
decomposition of activities. Primitive activities are

modeled using Mini Specs.

Models are large and very detailed since the low
level schemas essentially model the complete

program behavior

Models will be smaller since modeling is at the

conceptual level.

Can be used for any system

Primarily used for business workflows.

Complex model with 21 element types and 23

relationship types.

Simpler model with 3 element types and less than 10

relationship types.

Time functions are decomposed into activities, but

temporality of data is not supported.

Explicitly supports the temporal aspects of data in
the form of time stamps for state_types and

entity_types, and the notion of tlemporal consistency.

Time functions are linked to a data processing
component, formal support for data modeling is

absent

SEAM explicitly models data as in the extended ER

model.

15

conceptual modeling level, SEAM is not more complex to SEAM is also more scalable than other methodologies
use than well-established models like the ERM and the data that use multiple models. This is because these methodol-
flow diagram model. SEAM is a lot easier to use than ogies have no consistency checks and this allows modelers
models that capture detailed logic of activities, such as the to create divergent views of the same reality (such as

SYSREM/SREM. creating data flows that have no counterpart in the data

TABLE 2
Comparison between SEAM and SADT

SADT SEAM

Is activity centric and dala is modeled as arrows. Is neither activily nor data centric. Dala is modeled
as entity_types and state_types, activities are

modeled as activity_types.

Activity decomposition is formally supported, while | Activity and data decomposition is supported
data decomposition is not. formally. Data decomposition 1is lemporal

(substates).

No temporal modeling Explicitly supports the temporal aspects of data in
the form of time stamps for stafe_types and

entity_types, and the notion of temporal consistency.

Captures controls, mechanisms, activities and data Captures activities and data.

Since data is not modcled formally, mapping to | SEAM cxplicitly modcls data as in the extended ER
RDBMS abstractions is not supported. model. Mapping to RDBMS abstractions is
supported.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XX, XXXXXXX 2001

model, or creating inconsistent decompositions of data-
flows) especially as the size of requirements grows. In
SEAM, we have explicit links between activities and data,
and there is no redundant depiction of data or process
elements since multiple models are not used. This prevents
the creation of divergent views by the modeler, when
modeling large scale realities.

5 CONCLUSION

This work contributes to both theory and practice. First,
SEAM 1is a rigorously defined conceptual workflow
model, that incorporates time. It represents a first step
toward a conceptual model driven workflow environ-
ment, i.e., an environment where the design and
management of workflows is controlled from the
conceptual level. Although SEAM can be mapped to
any implementation, we have mapped it here to widely
used and understood implementation abstractions. The
information contained in this work should be sufficient
enough to allow application developers to utilize SEAM to
model and design workflow applications. The mapping
rules presented in Section 3 provide the integrated
methodology shown in Fig. 1b. This integrated methodol-
ogy is the primary contribution of this work.

Second, the formal definition of SEAM semantics and
the grammar presented here allow for the construction of an
automated design tool consisting of a SEAM compiler that
understands the mapping rules. The construction of such a
compiler, which is part of our future research, will further
automate the construction of workflow systems from SEAM
schemas. Third, the case study discussed in this work
validates the scalability of SEAM in real-world systems.
Fourth, the mapping rules in this work have also identified
abstractions that need to be supported by widely used
implementations, in order to model the SEAM conception
of reality, e.g., the well-known foreign-key concept can be
extended to include checking ranges of values, in order to
automate the temporal consistency trigger described in
Fig. 10a.

This work also has limitations. The biggest one in our
view is the curve associated with learning how to create
SEAM diagrams, and actually creating SEAM diagrams in
the complexity of a real-life setting. A modeler will need to
invest significant time in learning SEAM. However, based
on the case study, we feel the advantages of automatic
consistency (since everything is in one diagram) and the
ability to represent different levels of abstraction will be a
sufficient pay-off for modelers who do make the investment
in learning SEAM.

This work is part of a larger project that aims at
providing a conceptual model driven workflow design
and management environment. We have used SEAM to
model the workflows of a medium-sized organization. Our
future research aims at the construction of an automated
workflow design tool prototype, with SEAM as the user
interface.

ACKNOWLEDGMENTS

The authors would like to acknowledge the comments of
Dr. Peter Venable of the School of Computer Science,
Carnegie Mellon University, the associate editor and, three
anonymous reviewers. All the comments greatly improved
the quality of this paper.

REFERENCES

[1] D. Georgakopoulos, M. Hornick, and A. Sheth, “An Overview of
Workflow Management: From Process Modeling to Workflow
Automation Infrastructure,” Distributed and Parallel Databases,
vol. 3, pp. 119-153, 1995.

[2] M. Rusinkiewicz, P. Krychniak, and A. Cichocki, “Toward a
Model for Multidatabase Transactions,” Int’l . Intelligent and
Cooperative Information Systems, vol. 1, pp. 579-617, 1992.

[3] J. Davis, W. Du, and M.-C. Shan, “Open-PM: An Enterprise
Process Management System,” Bull. Technical Committee on Data
Eng., vol. 18, pp. 27-32, 1995.

[4] A. Bernstein, D. Chrysanthos, T.W. Malone, and J. Quimby,
“Software Tools for a Process Handbook,” Bull. Technical
Committee on Data Eng., vol. 18, pp. 41-47, 1995.

[5] T.Winograd and R. Flores, Understanding Computers and Cognition.
Addison Wesley, 1987.

[6] G. Kappel, P. Lang, S. Rausch-Schott, and W. Retschitzegger,
“Workflow Management Based on Objects, Rules and Roles,” Bull.
of the Technical Committee on Data Eng., vol. 18, pp. 11-18, 1995.

[7] S.]Joosten, “Trigger Modeling for Workflow Analysis,” Proc. CON:
Workflow Management, 1994.

[8] A. Reuter and F. Schwenkreis, “Contracts: A Low Level Mechan-
ism for Building General Purpose Workflow Management
Systems,” Bull. Technical Committee on Data Eng., vol. 18, pp. 4-
10, 1995.

[9] C. Mohan, G. Alonso, R. Gunthor, and M. Kamath, “Exotica: A
Research Perspective on Workflow Management Systems,” Bull.
Technical Committee on Data Eng., vol. 18, pp. 19-26, 1995.

[10] IBM, “Flowmark: Managing Your Workflow,”Report SH-19-8176-
01, 1994.

[11] H. Ludwig, “Termination Handling in Inter-Organizational
Workflows-An Exception Managemen Approach,” IBM Research
Division, Zurich Research Laboratory, Rueschlikon RZ 3042
(#93088), Aug. 1998.

[12] A. Chan and K. Harty, “Building Flexible Applications with the
Teknekron Enterprise Toolkit,” Bull. Technical Committee on Data
Eng., vol. 18, pp. 33-40, 1995.

[13] M.P. Singh and M.N. Huhns, “Automating Workflows for Service
Order Processing,” IEEE Expert, pp. 19-23, 1994.

[14] P.K. Chrysanthis and K. Ramamritham, “Sysnthesis of Extended
Transaction Models Using ACTA,” ACM Trans. Database Systems,
vol. 119, pp. 450-491, 1994.

[15] D.Barbara, S. Mehrotra, and M. Rusinkiewicz, “INCAs: Managing
Dynamic Workflows in Distributed Environments,”]. Database
Management, vol. 7, pp. 5-15, 1996.

[16] G.D. Michelis, “Net Theory and Workflow Models,” Application
and Theory of Petri Nets, S. Donatelli and J. Kleijn, eds., pp. 282-283,
1999.

[17] H.A. Kuno and E.A. Rundensteiner, “Incremental Maintenance of
Materialized Object-Oriented Views in Multiview: Strategies and
Performance Evaluation,” IEEE Trans. Knowledge and Data Eng.,
vol. 10, no. 5, pp. 768-793, Sept./Oct. 1998.

[18] M. Papazoglou, A. Delis, A. Bougettaya, and M. Haghjoo, “Class
Library Support for Workflow Environments and Applications,”
IEEE Trans. Computers, vol. 46, pp. 673-687, 1997.

[19] W.Wang and C. Zhong, “The Distributed Workflow Management
System-FlowAgent,”]. Computer Science and Technology, vol. 15,
pp. 376-382, 2000.

[20] G. Dinkhoff, V. Gruhn, A. Saalmann, and M. Zielonka, “Business
Process Modeling in the Workflow Management Environment:
Leu,” Proc. 13th Int’l Conf. Entity Relationship Approach, 1994.

[21] F. Casati, S. Ceri, B. Pernici, and G. Pozzi, “Conceptual Modeling
of Workflows,” Proc. 14th Int’l Conf. Object Oriented and Entity
Relationship Approach, 1995.

[22] A.-W. Scheer, Architecture of Integrated Information Systems. Berlin:
Springer-Verlag, 1992.

BAJAJ AND RAM: SEAM: A STATE-ENTITY-ACTIVITY-MODEL FOR A WELL-DEFINED WORKFLOW DEVELOPMENT METHODOLOGY 17

(23]

(24]

(23]

[20]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(30]

[37]

(38]

(39]

[40]

[41]

[42]

(43]

(44]

[43]

[40]

[47]

O. Zukunft and F. Rump, “From Business Process Modeling to
Workflow Management: An Integrated Approach,” Business
Process Modeling, B.S. Reiter and E. Stickel, eds., 1996.

L. Yu, “A Coordination Based Approach to Modelling Office
Workflow,” Business Process Modeling, B. Scholz-Reiter and
E. Stickel, eds., 1996.

M. Rohloff, “An Object Oriented Approach to Business Process
Modeling,” Business Process Modeling, B. Scholz-Reiter and
E. Stickel, eds., 1996.

M.A. Vouk, D.L. Bitzer, and R.L. Klevans, “Workflow and End-
User Quality of Service Issues in Web-Based Education,” IEEE
Trans. Knowledge and Data Eng., vol. 11, no. 4, p. 673-687, July/
Aug. 1999.

J.M. Nieves and A.P. Sage, “Human and Organizational Error as a
Basis for Process Reengineering: With Applications to Systems
Integration Planning and Marketing,” IEEE Trans. Systems, Man,
and Cybernetics—Part A: Systems and Humans, vol. 28, pp. 742-744,
1998.

M. Klein and C. Dellarocas, “A Knowledge-Based Approach to
Handling Exceptions in Workflow Systems,” Computer Supported
Cooperative Work: The]. Collaborative Computing, vol. 9, pp. 399-412,
2000.

R. Agarwal, G. Bruno, and M. Torchiano, “An Operational
Approach to the Design of Workflow Systems,” Information and
Software Technology, vol. 42, pp. 547-555, 2000.

J.LA. Miller, A.P. Sheth, and K.J. Kochut, “Perspectives in
Modeling: Simulation, Database and Workflow,” Conceptual
Modeling: Current Issues and Future Directions, P.P. Chen, J. Akoka,
H. Kangassalo, and B. Thalheim, eds., pp. 154-167, 1999.

L. Shuzhou and A.G.E. Soong, “ Modeling Workflows with
Reactive Objects,” Int’l]. Flexible Automation and Integrated
Manufacturing, vol. 7, pp. 343-353, 1999.

S. Jablonski, “On the Complementarity of Workflow Management
and Business Prrocess Modeling,” SIGOIS Bul., vol. 16, pp. 33-38,
1995.

P.P. Chen, “The Entity-Relationship Model: Towards a Unified
Model of Data,” ACM Trans. Database Systems, vol. 1, pp. 9-36,
1976.

E.F. Codd, “A Relational Model for Large Shared Databanks,”
Comm. ACM, vol. 13, pp. 377-387, 1970.

K.L. Siau, H.C. Chan, and K.P. Tan, “A CASE Tool for Conceptual
Database Design,” Information and Software Technology, vol. 34,
pp- 779-786, 1992.

W. Kozaczynski and L. Lilien, “An Extended Entity-Relationship
Database Specification and Its Automatic Verification and
Transformation into the Logical and Relational Design,” Proc.
Sixth Int’l Conf. E-R Approach, 1987.

D. McGovern and C.J. Date, A Guide to Sybase and SQL Server.
Addison Wesley, 1993.

K.T. Owens, Building Intelligent Databases with Oracle PL/SQL,
Triggers and Stored Procedures. New Jersey: Prentice Hall, 1996.
J.Y.L. Thong, C.-S. Yap, and K.S. Raman, “Engagement of External
Expertise in Information Systems Implementation,” |. Management
Information Systems, vol. 11, pp. 209-231, 1994.

A. Silberschatz, M. Stonebraker, and J. Ullman, “Database
ReSearch: Achievements and Opportunities into the 21st Cen-
tury,” SIGMOD Record, vol. 25, pp. 52-63, 1996.

EK. Clemons and P.R. Kleindorfer, “An Economic Analysis of
Interorganizational Information Technology,” Decision Support
Systems, vol. 8, pp. 431-446, 1992.

H. Gregersen and C.S. Jensen, “Temporal Entity Relationship
Models: A Survey,” AalBorg University, Denmark TIMECENTER
TR-3, Jan. 1997.

T. deMarco, Structured Analysis and System Specification. Yourdon,
Inc., 1978.

JM. Smith and D.C.P. Smith, “Database Abstractions: Aggrega-
tion and Generalization,” ACM Trans. Database Systems, vol. 2,
pp. 105-133, 1977.

S. Ram and V. Storey, “Composites and Grouping: Extending the
Realm of Semantic Modeling,” Proc. Hawaiian Int’l Conf. System
Sciences, 1993.

T.]J. Teorey, D. Yang, and J.P. Fry, “A Logical Design Methodology
for Relational Databases Using the Extended ER Model,”
Computing Surveys, vol. 18, pp. 197-222, 1986.

R.W. Floyd and R. Beigel, The Language of Machines. New York:
Computer Science Press, 1994.

[48] A. Bajaj, “Managing Business Workflows Using a Database
Approach: A Formal Model, A Case Study, and A Prototype,”
MIS, Univ. of Arizona, Tucson, 1997.

H. Korth and A. Silberschatz, Database Systems Concepts. New
York: McGraw Hill, 1991.

A. Bajaj and S. Ram, “An Empirical Methodology to Evaluate the
Completeness of Conceptual Business Process Models,”].
Information Technology Cases and Applications, vol. 1, pp. 5-30, 1999.
M.T. Laamanen, “The IDEF Standards: Methods and Associated
Tools for the Information Systems Life Cycle,” Proc. Int’l Federation
for Information Processing, 1994.

M.W. Alford, “SREM At The Age Of Eight: The Distributed
Computing Design System,” Computer, vol. 18, pp. 36-46, 1985.
D.T. Ross, “Structured Analysis (SA): A Language for Commu-
nicating Ideas,” IEEE Trans. Software Eng., vol. 3, 1977.

D.T. Ross, “Applications and Extensions of SADT,” Computer,
vol. 18, pp. 25-35, 1985.

(49]

[50]

[51]

(52]

(53]

[54]

Akhilesh Bajaj received a BTech degree in
chemical engineering from the Indian Institute of
Technology, Bombay, an MBA degree from
Cornell University, and a PhD degree in MIS
(minor in computer science) from the University
of Arizona. He is an assistant professor of
Information Systems Management at the
H. John Heinz Il School of Public Policy and
Management, at Carnegie Mellon University. Dr.
Bajaj’s research deals with the construction and
testing of tools and methodologies that facilitate the construction of large
organizational systems, as well as studying the decision models of the
actual consumers of these information systems. He has published
articles in several academic journals and conferences. He is on the
editorial board of the Journal of Database Management. He teaches
graduate courses on basic and advanced database systems, as well as
enterprise wide systems.

Sudha Ram received the BS degree in chem-
istry (with physics and mathematics) from the
University of Madras in 1979, the PGDM degree
from the Indian Institute of Management, Cal-
cutta in 1981 and the PhD degree from the
University of lllinois at Urbana-Champaign in
1985. She is a professor of management
information systems and the director of the
Advanced Database Research Group at the
University of Arizona. Dr. Ram’s research deals
with the modeling and analysis of database- and knowledge-based
systems for business, manufacturing, and scientific applications. Her
research has been funded by IBM, NCR, US ARMY, NIST, US National
Science Foundation, NASA, ORD (CIA), and Raytheon. She has
published articles in such journals as Communications of the ACM,
IEEE Expert, IEEE Transactions on Knowledge and Data Engineering,
ACM Transactions on Information Systems, Information Systems, and
Management Science. Dr. Ram serves on the editorial boards for the
Journal of Database Management, Information Systems Frontiers,
Journal of Information Technology and Management, and as associate
editor for the Journal of Systems and Software and INFORMS Journal
on Computing. She teaches graduate courses on database design,
E-business, and advanced information technology. She also serves as
an information systems consultant to several national and international
corporations. Dr. Ram recently received the Anderson Consulting
Professor of the Year award in recognition of her contributions as
professor, scholar, educator, and community leader. She is a member of
the IEEE Computer Society.

