Formulating Concurrency Control Schemes as Integer Programs

Akhilesh Bajaj

The Heinz School

Carnegie Mellon University

Email: akhilesh@andrew.cmu.edu
Address:

Room 2105C

Hamburg Hall

Carnegie Mellon University

Pittsburgh, PA 15213

Phone: (412) 268 4271

Formulating Concurrency Control Schemes as Integer Programs

Abstract

Various concurrency control schemes have been proposed to manage transactions in database systems. We use a previously proposed framework that defines dimensions of these schemes to come up with 2 new concurrency control schemes. These schemes are formulated as Integer Programs that will be solved by the concurrency manager, with an aim to globally optimize allocation of data resources to incoming transactions.

Keywords: Database Systems, Concurrency Control, Integer Programming.

1. Introduction

Traditional databases deal with local, persistent data. In addition, specialized databases exist. E.g., Distributed databases deal with geographically dispersed data [23].. Concurrency control is a major aspect of transaction management policy in databases. Various heuristic schemes have been proposed and extensively tested in literature [30]. This paper makes, to the best of our knowledge, a first attempt at formulating the concurrency problem as an integer program. The rest of the paper is organized as follows: section 2 describes an established framework for studying the makeup of existing concurrency control schemes. Section 3 discusses strategies that can be used to allocate priorities to transactions, section 4 uses the framework to come up with an IP formulation and 2 schemes are proposed in section 5. Section 6 discusses the advantages and disadvantages of using IP solutions to solve the concurrency problem. Finally, section 7 concludes with directions for future research. Throughout this paper, the term "data granule" is synonymous with "data item" in literature.

2. A brief look at existing CC schemes

To maintain consistency in a database, concurrency control (CC) mechanisms are used. They ensure consistency by ensuring serializability: that an interleaved execution of any set of transactions that read from and write to the database are equivalent to a serial schedule of these transactions on the same database. Equivalence can mean that the 2 schedules leave the database in the same state, or more stringent definitions exist, e.g., read-write equivalence [9]. [30] have developed a nice framework to classify existing CC design space along several dimensions: conflict detection, conflict resolution and serialization order.

2.1 Conflict detection

Detecting a conflict before a data granule access is done in pessimistic CC schemes, while optimistic schemes check for serializability at the validation time [16]. Several mechanisms are used to facilitate conflict detection, e.g., locks, time-stamps and serialization graphs (SGs). Pessimistic 2-phase locking schemes (2PL) use locks, time stamping schemes use time-stamps, and so on. Optimistic concurrency control (OCC) schemes also may use any of these mechanisms [7, 17]. Many variants of 2PL schemes exist, e.g., strict 2PL to avoid cascading rollbacks during recovery, multigrain 2PL [9, 12]. There are many kinds of locks: read (shared) and write (exclusive) are the most prevalent. A conflict arises if any other transaction wants to lock a data granule on which some other (uncommitted) transaction has or had an exclusive lock. In addition in OCC schemes, weak and strong locks also exist [26, 28].

In time stamp ordering (TSO) schemes, each transaction is assigned a time stamp before execution, and for each granule the transaction accesses, the transaction's TS is checked against the TS of the data granule that last accessed the same granule, to see if a serialization order based on TS values can be maintained. The SG mechanism maintains information about the execution ordering of all transactions and checks for cycles. A transaction is removed from the SG, not on commit, but when it can be shown that it will never be involved in a cycle in the SG. It is important to note that the sets of possible serializable schedules using each mechanism intersect, but each set has schedules that are unique to itself.

2.3 Conflict Resolution

The conflict resolution mechanism (CR) decides which transaction to penalize in case of a conflict, usually based on some measure of priority of the transaction (to be discussed later in section 3). Most frequently a transaction is either blocked or restarted. In some schemes, the granule is granted to both transactions and different versions are maintained [2, 4, 24,]. In other schemes the serialization order is dynamically adjusted [7, 8, 17]. In pessimistic schemes either blocking or restarting can be used, but in OCC schemes, blocking has no meaning. Some schemes don't block but delay the commit, so that serializability is maintained [1]. Some disadvantages of blocking include cascading blocks, deadlock, and priority inversion where a lower priority transaction blocks a higher priority transaction. [11, 10, 25] have proposed CC schemes to counter these disadvantages. The major disadvantage of restarting is wasted work, and in some cases cascading restarts [8]. Also, transactions become more vulnerable to this, as they make more progress towards completion, since more granules are accessed. This creates both fairness issues as well as higher costs. The locking with deferred blocking (LDB) protocol [29] seeks to alleviate this, by granting a transaction weak locks in its early non blocking phase, and then promoting all its locks to strong locks in the blocking phase. This prevents the restarting of a transaction in its later phase (blocking phase) and also reduces the amount of time a data granule is held by a strong lock.

2.4 Serialization Order

The mechanism to enforce this may be based on the transactions' start time, their completion time, or a dynamically derived order such as a granule access time. Based on this, each CC scheme decides whether serialization is enforced or not.

Thus a time stamp ordering (TSO) schemes may assign a TS to each transaction before it is executed, and if during the course of execution the transaction cannot be certified based on that ordering, it is restarted. In OCC schemes, the validation time order is used usually as the serialization order mechanism. In 2PL schemes and SG schemes, the granule access order is usually used.

In some schemes [3, 5, 21, 27] the serialization order is dynamically readjusted. Each version of a data granule is valid only between two consecutive updates. A transaction that has read a particular version of a data granule can only be certified with a time stamp in the valid interval of the data. If multiple granules are read, an intersection of their intervals is used, and if this is ever null, the transaction is restarted. In addition, granules updated by a transaction cannot be read by a certified transaction with a later time-stamp.

3. Assigning Priority to Transactions

Most CC schemes assume transactions have the same priority. The measures used to test the performance of these schemes have conventionally been the transaction throughput rate or the response time [30]. While this has been a fairly valid assumption in the past, with the advent of large databases, and transactions being generated from different classes of users, this assumption becomes less tenable. Indeed a likely scenario might be a large distributed DBMS, where transactions are being generated to serve users paying different rates for using the database, thus making some transactions higher priority than others.

In addition, time critical applications are already served by real-time data-bases [19]. Here, transactions come with deadlines and a common measure of performance becomes how many transactions are missing their deadlines. Usually transactions with earlier deadlines are considered higher priority in these applications. Various other measures of a transaction's priority have been defined [22, 8, 10, 29].

Thus it can be said that the priority of transactions should be taken into account when allocating data granules (as when allocating other resources like CPU time, disk accesses, etc.) Referring back to the various dimensions in section 2, it is clear that the notion of transaction priority will effect only the conflict resolution dimension of any CC scheme. The question then becomes: on what basis should a scheme decide which transaction gets blocked / restarted in the event of a data conflict. Depending on the requirements of the database, various schemes do this differently. Some do not use priority but simply fairness, e.g., the OCC-broadcast commit scheme [18]. In these priority-incognizant schemes, the first transaction that obtains the data granule is the one that is not penalized. All the other transactions in its conflict set are penalized (either blocked or restarted). Other schemes use a measure of a transaction's priority (which need not be the same as the measure of priority used when scheduling, i.e., allocating other resources such as CPU time and disk access) to resolve a conflict in favor of one transaction or another, given a conflict set of transactions [13, 14, 15]. All of these schemes are heuristic schemes, one example being that if a higher priority transaction has already accessed the data granule, then restart or block the requesting transaction. A drawback of this particular heuristic is that many lower priority transactions may have to be blocked/restarted for the sake of one transaction. Many other heuristics have been proposed and in all cases but one [7], these heuristics have not been shown to consistently outperform a priority-incognizant scheme. However, the intuition that a priority-cognizant scheme should be better than a priority-incognizant scheme is strong, especially if the scheme does not use a heuristic, but makes some attempt at global optimization. In this paper, we make an attempt to formulate the entire process of deciding which transactions should be penalized as an Integer Programming (IP) problem. IP models have been used in distributed databases to model the file allocation problem, [20, 23], in some cases taking concurrency control schemes into account. However, to the best of our knowledge, formulating a CC scheme as an IP problem, wherein the CC manager solves an IP, has not been done before this.

4. An Integer Programming (IP) formulation for Concurrency control

Based on the framework in section 2, the conflict detection dimension is closely linked with conflict resolution, and both these are formulated in the IP. However, serialization order is not formulated in the IP.

4.1 Objective function and Conflict Detection

Consider a set of data granules Xi= {X1. . . Xm} and a set of transactions Tj= {T1 . . . Tl} that access these data granules. A transaction is a set of read or write instructions to data granules.

Let Sij denote the state of data granule Xi with respect to transaction Tj
 Sij
= 0

if Tj does not access Xi

= 1
if Tj only reads Xi

= l

if Tj writes Xi

The decision variables are a set of 0-1 variables,

 Vj =

{V1 . . . Vl} where

 Vj
=
 0
if the transaction Tj is penalized (blocked/restarted)

=
1
if the transaction Tj is allowed to proceed to the execution state

Each transaction Tj has a priority ij associated with it.

If the objective of the CC scheme is to maximize throughput of higher priority transactions, it can be formulated as:

max
[image: image1.wmf]å

=

l

j

1

 Vj ij

(1)
The conflict detection scheme that we use is pessimistic and can be formulated as the set of constraints:

[image: image2.wmf]å

=

l

j

1

 VjSij <= l (i

(2)
The set of constraints controls the fact that at any time, a data granule may be read by upto 'l' transactions, or written by only one transaction. In this work, we do not explore how to formulate an optimistic scheme as a set of constraints.

4.2 Conflict Resolution

As mentioned in section 2, blocking and restarting are the 2 most common alternatives, and we attempt to formulate both.

4.2.1 Blocking

In this case the transaction is blocked until the data granule has been released and is available to the transaction. As described in detail in section 5, the CC manager is fired periodically, and blocks some transactions. Since only non-conflicting transactions are allowed to proceed each time the CC manager is fired, and since priorities of transactions may change dynamically (e.g., if the priority is based on deadline), a situation can arise when a subsequent solution of the IP blocks a transaction that had previously been allowed to execute. In order to prevent this, we need the following set of constraints:

Let Rj be a set of 0-1 variables such that

 Rj
=
0
if transaction Tj has never been allowed execution

=
1
if transaction Tj has been allowed execution.

The constraint set is:

Vj
>= Rj (j

(3)
(3)

This set of constraints ensures that once a transaction has started execution, it will always execute in subsequent solutions of the IP. Enforcing this constraint will also prevent deadlock (since no transaction can hold a data granule and request another).

Note that if this constraint is imposed, then only non-conflicting sets of transactions (chosen on the basis of the objective function) will be allowed to execute concurrently. Thus, the "blocking" by the scheme will take place before the transaction begins execution. While such a scheme should reduce concurrency, as opposed to letting conflicting transactions execute and then blocking one, it should be biased in favor of transactions with higher priority (because of the objective function). However, one major disadvantage will be that a higher priority conflicting transaction may arrive during the run-time of a transaction, and be blocked till the transaction completes. Thus the higher priority transaction may end up waiting in the worst case for the average execution time of a transaction in the database. This could be a problem in real-time databases.

4.2.2 Restarting

In this case, conflicting transactions will be allowed to execute concurrently, and a penalized transaction will be restarted. This is implemented by simply forcing all Rj = 0. Thus each time the IP is solved, it is possible that an executing transaction will be restarted (e.g., because a conflicting transaction's priority has gone up).

4.3 Serialization Rule and Order

The serialization order in both our schemes in section 5, enforces that serialization order is the same as completion order. Note that if the blocking option in section 4.2.1 is used, this order is the same as the granule access time order, because a transaction will always finish once it starts.

4.4 Admission Control for Real-Time Databases

In real-time databases, as mentioned earlier, transactions come with deadlines. Since our model assumes canned transactions (in order to solve the IP the CC manager needs to know the read-set and write-set of granules for all transactions that await execution), we can use this information to do some sort of admission control. While this has been done when scheduling for other resources [6, 30], it has not been done in CC schemes. Our admission control constraint formulation seeks to screen all transactions that would not finish even if they had full possession of the system resources. This can help in overload management, which is important in real-time databases.

Let each transaction Tj have a deadline tj associated with it.

Since prior knowledge of the transaction is assumed (i.e., canned transactions are assumed), we know:

Cj = CPU cycles required by a transaction Tj
Ij = Disk I/O granules required by Tj
Let 'C' be the number of CPU cycles available per second, and 'I' the number of disk accesses allowed per second. (These are hardware characteristics).

The following set of constraints eliminate from consideration those transactions that have no hope of completion.

Vj Cj + Vj Ij <= tj (j

(4)

 C I

5. Two CC schemes

We now summarize assumptions we have made and present 2 schemes that can be used, using some of the constraints developed above.

5.2.1 Assumptions

Transactions are assumed to be "canned", i.e., their read and write sets are known as they enter the system. The system is assumed to have a multiprogramming level (MPL) that defines the maximum number of transactions that can be processed concurrently. The hardware characteristics of the system (I and C in section 4) and the deadline of the transaction may or may not be known. The priority of each transaction is assumed to be known. We also assume that in restart protocol, writes are local as the transaction executes, and are globally visible only at commit. in blocking protocol writes could either be immediately global or local. The CC manager runs continuously, and marks transactions as "execute" or "penalize", and the transaction manager in the system deals with the transactions accordingly. Thus when the CC manager finishes making a decision, this is communicated to the transaction manager immediately, which takes the necessary steps.

5.2.2 CC scheme using Blocking and Restarting

The scheme for blocking is:
while not done

solve objective function for transactions in MPL subject to constraints [2, 3 and any others that are used, e.g., 4];

for all transactions Tj

if Vj =1

set Rj =1;

update Vj;

notify transaction manager;

The scheme for restarting is

while not done

for all Tj in MPL

 set Rj =0;

solve objective function for transactions in MPL

subject to constraints [2, 3 and any others that are used, e.g., 4];

for all transactions Tj

update Vj

notify transaction manager;

Once the transaction has been marked with the value of its decision variable by the CC manager, it is handled by the transaction manager. An example that illustrates the schemes follows:

In this situation, we have 10 transactions and 7 data granules.

Transaction
Disk accesses
CPU cycles
Priority
Deadline

1
2
9
2
0.5

2
0
3
3
0.2

3
0
4
2
0.15

4
1
4
2
0.3

5
0
2
1
0.15

6
1
5
2
0.2

7
0
2
3
0.25

8
0
1
7
0.3

9
0
1
6
0.3

10
0
1
5
0.25

Hardware Characteristics:

I = 50 data granules / second

C = 1000 cycles

The access matrix becomes:

T1
T2
T3
T4
T5
T6
T7
T8
T9
T10

X1
W
R
R
R
R
R
R
R
R
R

X2
R
R

W

X3
R

R

X4
R

W

R

X5
W

X6
R

R
R
R
R
R

X7
R
R
R

During the first iteration of the while loop of the CC manager, the objective becomes

/*from (1)*/

max 2v1 + 3v2 +2v3 + 2v4 + v5 + 2v6 + 3v7 + 7v8 + 6v9 + 5v10

subject to

/* constraints in (2)*/

10v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10 <= 10

v1 + v2 + 10V6 <=10

v1 + v3 <=10

v1 + 10v4 + v6 <= 10

10v5 <= 10

v1 + v3 +v4 + v5 + v6 + v7 <= 10

v1 + v2 + v3 <= 10

/*constraints in (4)*/

0.049v1 <= 0.5

0.003v2 <= 0.2

0.004v3 <= 0.15

0.024v4 <= 0.3

0.002v5 <= 0.15

0.025v6<= 0.2

0.002v7 <= 0.25

0.001v8 <= 0.3

0.001v9 <= 0.3

0.001v10 <= 0.25

Vj = 0 or 1 for all transactions.

The set of constraints (3) is not shown for brevity, but all Rj =0 in the first iteration. A branch-and-bound solution blocks transactions 1 and 6, while the remaining transactions are allowed to continue. If the blocking option is used, some Rj will be set to 1. In the next iteration of the while loop of the CC scheme, the IP will be solved again.

Clearly, this example incorporates constraints 2, 3 and 4. If the blocking scheme had been used, transactions except 1 and 6 would have been executed first, and only then would 1, 6 and any other conflicting transactions that entered subsequently have been executed. In the restart scheme, the next solution of the IP (the next iteration of the while loop) may have allowed 1 and 6 to execute and restarted transactions other than 1 and 6, if the priorities had changed dynamically, or if some other higher priority transactions had entered the system.

6. Strengths and weaknesses of the schemes

A clear disadvantage is that IP solutions are NP-complete, and for large MPLs or for fine-grained databases, the time taken for one iteration of the while loop by the CC manager will be prohibitive. Lagrangian relaxation [31], linear programming relaxation, and other techniques can be used to try and solve the IP formulation in less time, but there will be a clear threshold of values for MPL size and number of granules over which these schemes will become prohibitively expensive. This aspect is not investigated in this paper. The schemes will incur less overhead (in terms of IP solution time) for less constraints and decision variables, i.e., for databases with small MPLs and with coarse granules.[12] covers some of the levels of granularity that may be used.

Another disadvantage is that these schemes require canned transactions (i.e., the transactions need to be known in advance and not at run time). An extension would be to formulate schemes without this assumption. Third, the schemes require an explicit specification of priority of transactions, and this would depend on the requirements of the database. Thus, a real-time database might use an inverse function of deadline as a priority measure, while a distributed database might use distance of user from server as a measure of priority, in order to save on communication costs. An incorrect specification of priority could result in worsened performance from a user point of view.

Finally, it is important to note that for real-time databases, a transaction is not guaranteed to complete just because it has been approved. There will still be a competition for other resources, and scheduling heuristics will need to be used.

One clear strength of the schemes is that global optimization is done. Thus, in some cases, where a higher priority transaction blocks several lower priority transactions, the higher priority transaction will be penalized, which does not always happen when heuristics are used for conflict resolution.

Another advantage is that deadlock is avoided by both the schemes. Third, because the schemes seek to maximize the throughput of higher priority transactions, in a sense they represent the best a CC algorithm can do (ignoring the overhead of the CC manager, which is discussed above). Thus these schemes can act as standards against which heuristic schemes (with presumably less overhead) can be evaluated in performance studies. Finally, these schemes appear suitable in situations where the data base has a low MPL and a clear difference in priorities of incoming transactions with high data contention.

7. Conclusion

Based on an established theoretical framework of CC schemes, we developed 2 CC schemes using IP formulations. The work here can be extended in numerous ways. First, the schemes can actually be implemented and tested against heuristic schemes, in order to see which relaxation techniques work, and at what values of MPL and number of granules the scheme becomes prohibitively expensive. Second, although we have induced here that the scheme should perform better than heuristic schemes, it will be interesting to test this and see the degree of difference in performance. Third, the objective function may be formulated differently for different situations (e.g., in real-time databases the objective may be to ensure maximum number of higher priority transactions make their deadlines) in future research. Finally, more constraints might be added to model the different options available under the conflict detection and resolution dimensions of the framework of CC schemes presented earlier, e.g., optimistic schemes for conflict detection or locking with deferred blocking for conflict resolution.

References

1. D. Agrawal A.E. Abbadi and A.E. Lang. "Performance characteristics of protocols with ordered shared locks" in Proc. Int. Conf. on Data Engineering, 1991, pp. 592 - 601.

2. R. Bayer, H. Heller and A. Reiser. "Parallelism and recovery in database systems," ACM Trans. Database Syst. vol. 5, no. 2, pp. 139-156, June 1980.

3. R. Bayer, et al., "Dynamic timestamp allocation for transactions in database systems", in Proc. 2nd. Int. Symp. on Distributed Databases, H.J. Schneider, Ed. Amsterdam, The Netherlands:North-Holland, 1982, pp. 9-21.

4. P.A. Bernstein, et al., Concurrency Control and Recovery in Database Systems. reading, MA: Addison Wesley, 1987.

5. C. Boksenbaum, et al., "Concurrent certification by intervals of timestamps in distributed database systems", IEEE Trans. Software Engg., vol. SE-13, no. 4, pp. 409-419, Apr. 1987.

6. A. Datta, S. Mukherjee, P. Konana, I. Viguier, A. Bajaj. "Multiclass transaction scheduling and overload management in real-time database systems," Information Systems, vol. 21, no. 1, 1996, pp. 29-54.

7. A. Datta, A. Bajaj, R. Veloo, "A high performance, low cost, priority cognizant concurrency control algorithm for firm real-time database systems," submitted for publication, 1995.

8. A. Datta, A. Bajaj, R. Veloo, "A study of concurrency control in real-time, active database systems", submitted for publication, 1995.

9. R. Elmasri, S. Navathe, Fundamentals of Database Systems, Benjamin Cummings Pub. Co., 2nd ed., 1994.

10. P.A. Franaszek, et al., "Concurrency control for high contention environments," ACM Trans. Database Syst., vol. 17, no. 2, pp. 304-345, June 1992.

11. P.A. Franaszek, et al., "Limitations of concurrency in transaction processing," ACM Trans. Database Syst., vol. 10, no. 1, pp. 1-28, Mar. 1985.

12. J.N. Gray, et al., "Granularity of locks and degrees of consistency in a shared database," in Proc. IFIP TC-2 Working Conference on Modelling in Data Base Management Systems G.M. Nijssen, Ed. Amsterdam, The Netherlands: North-Holland, 1976, pp. 1-29.

13. J.R. Haritsa, M.J. Carey and M. Livny, "Dynamic real-time optimistic concurrency control,' in Proc. Real-Time Syst. Symp.., 1990, pp. 94-103.

14. __ , "Data access scheduling in firm real-time data base systems," Real-Time Syst., vol. 4, no. 3, pp. 203-241, Sept. 1992.

15. J. Huang et al., "Experimental evaluation of real-time optimistic concurrency control schemes," in Proc. Very Large Data Mases, 1991, pp. 35-46.

16. H.T. Kung, J.T. Robinson, "On optimistic methods for concurrency control," ACM Trans. Database Syst., vol. 6, no. 2, pp. 213-226, June 1981.

17. Y. Lin and S.H. Son "Concurrency control in real-time databases by dynamic adjustment of serialization order," in Proc. Real-Time Systems Symp., 1990, pp. 104-112.

18. D. Menasce and T. Nakanishi. "Optimistic versus pessimistic concurrency control mechanisms in database management," Information Systems, vol. 7., no. 1, 1982.

19. R.K. Abbott and H. Garcia-Molina. "Scheduling real-time transactions: A performance evaluation," ACM Trans. Database Syst., vol. 17, no. 3, pp. 513-560, Sept. 1992.

20. D. Ghosh, et. al., "File allocation problem: comparison of models with worst case and average communication delays," Operations Research, vol. 40, no. 6, pp. 1074-1085, 1992.

21. J. Noe and D. Wagner. "Measured performance of time interval concurrency control techniques," in Proc. of Very Large Data Bases, 1987, pp. 359-365.

22. B. Purimetla, et al., "Priority assignment in real-time active databases," Technical Report, Computer Sciences Department, University of Massachussetts, 1994.

23. S. Ram and S. Narasimhan, "Database allocation in a distributed environment: incorporating a concurrency control mechanism and queuing costs" Management Science, vol. 40, no. 8, pp. 969-983, 1994.

24. D.P. Reed, "Implementing atomic actions on decentralized data," ACM Trans. Computer Syst., vol. 1, no. 1, pp. 3-23, Feb. 1983.

25. L. Sha, et. al., "Priority inheritance protocols: an approach to real-time synchronization," IEE Trans. Comput., vol. 39, no. 9, pp. 1175-1185, Sept. 1990.

26. P.S. Yu and D.M. Dias, "Analysis of hybrid, concurrency control schemes for a high data contention environment," IEEE Trans. Software Eng., vol. 18, no. 2, pp. 118-129, Feb. 1992.

27. P.S. Yu, et. al., "Modeling and analysis of a time-stamped history based certification protocol for concurrency control", IEEE Trans. Knowledge Data Eng., vol. 3, no. 4, pp. 525-537, Dec. 1991.

28. P.S. Yu and D.M. Dias, "Impact of large memory on the performance of optimistic concurrency control schemes," in Proc., PARBASE-90 Int. Conf. on Database, Parallel Architectures and their Applications, 1990, pp. 86-90.

29. P.S. Yu and D.M. Dias, "Performance analysis of concurrency control using locking with deferred blocking," IEEE Trans. Software Eng., vol. 19, no. 10, pp. 982-996, Oct. 1993.

30. P.S. Yu, et. al., "On real-time databases: concurrency control and scheduling", Proc. of the IEEE, vol. 82, no. 1, Jan. 1994.

31. Fischer, M.L. "The Lagrangian relaxation method for solving integer programming problems," Management Science, vol. 27, no.1, pp. 1-18, Jan. 1981.

PAGE

_944732517.unknown

_944732626.unknown

