Bajaj

Re-emergence: Custom IS Development?

A Re-emergence of Custom Information System Development? An Analysis, a Model and an Implementation

	Akhilesh Bajaj

University of Tulsa

akhilesh-bajaj@utulsa.edu

ABSTRACT

This work provides a fresh perspective on the custom-build versus rent/buy decision that organizations have faced when dealing with large scale information systems. We first describe the historical trends in this area. Next, we present an analysis of what caused the current trend of renting/purchasing off-the-shelf systems and why the future may portend an increase in custom building. We make the case for why systems analysis and design will play an increasing role in the building of large custom ISs, and highlight the need for work in this area. As a first step in this direction, we propose a model called ERA (Entity Relationship Activity) and describe one case study where the model was used to help construct a custom system to support 20 roles in an organization.

Keywords

Custom IS, systems analysis, Commercial-Off-The-Shelf Systems,
INTRODUCTION

The custom build versus rent/buy decision for large scale information systems (ISs) has emerged as an important decision facing organizations in the last decade. While there is a great deal of recognition of this problem in the industry literature (Higaki 1995; MindBridge 2004), it has been relatively ignored in the academic literature. Though the basic pros and cons of both approaches are mentioned in several industry articles, there has been a dominant trend amongst organizations to buy (or rent) commercial of the shelf systems (COTS) for larger ISs, rather then build customized systems (Abts 2002; Vedaris 2004). The success of these large COTS implementations, such as enterprise resource planning (ERP) systems, has been low, and has been usually accompanied by lower end-user satisfaction and unsubstantiated changes in productivity (Abts 2002; Taeschler 2002).

In this work, we consider large-scale organizational ISs that utilize a back-end database management system (DBMS) to store and retrieve information, and provide an interface to end-users to access and modify this information. As mentioned in (McManus 2003), this covers the majority of large IS systems that support business processes in an organization. The primary purpose of this work is to: a) analyze why custom building of large scale systems may be increasingly viable; b) describe a model we call ERA (Entity-Relationship-Activity) and a computer aided software engineering (CASE) tool that has been developed and utilized primarily for large scale IS analysis and design; and c) describe a real-world case that utilized this tool to custom build an IS for supporting 20 end-users in a medium sized organization.
The rest of this paper is organized as follows. In section 2, we analyze the history of IS procurement in more detail and discuss why custom building may be re-emerging. In section 3, we describe the ERA CASE tool that facilitates analysis and design of large scale IS requirements. Section 4 illustrates the usage of ERA and lessons learned from a real world implementation. Conclusions and future research are discussed in section 5.

IS Procurement and the Potential Re-Emergence of Custom-Building
Historically, organizations faced with a need for a large scale IS resorted to building in-house (MindBridge 2004). Since the last decade however, this trend has been almost completely reversed, so that most large scale systems today consist of COTS systems. This phenomenon began with the hope that the COTS approach would be the magic bullet (Brooks 1987) that would kill the beast of software development. This view was especially encouraged by policies at the executive level in the organization that strongly favored purchasing COTS-based systems over customized development (Abts and Boehm 1998). The perceived advantages of buying include a) cost savings due to economies of scale that allow a vendor to develop a COTS system and distribute fixed development costs over multiple customers; b) utilizing “best-of-breed” solutions that COTS vendors developed over time and working with multiple customers; and c) mitigating the risk of developing a customized large scale IS by utilizing a solution that had been known to work in other organizations.

Diverse surveys of executives indicate that executives believe that ERP systems will centralize information and simplify their information technology (IT) functions by dealing with just one vendor (Taeschler 2002). A well known case of the $100 million implementation of SAP at Corning corp. resulted in data centralization as the main benefit (Ross 1999). In a Harvard Business Review article, Davenport (Davenport 1998) described the pros of COTS solutions thus:

“Enterprise systems present a new model of corporate computing. They allow companies to replace their existing information systems, which are often incompatible with one another, into a single, integrated system. Unlike computer systems of the past, enterprise systems are off-the-shelf systems.”

In the same article, Davenport described some of the shortcomings of legacy systems:

“If a company’s sales and ordering systems cannot talk with its production scheduling systems then its manufacturing productivity and customer responsiveness suffer…if its sales and marketing systems are incompatible with its financial-reporting systems, then management is left to make important decisions by instinct rather than according to a detailed understanding of products and customer profitability. To put it bluntly: if a company’s systems are fragmented, it’s business is fragmented.” (Davenport 1998, pp. 123).

The cumulative effects of customized legacy systems led to “islands of information” and fragmentation of the business processes. As mentioned in (Davenport 1998) [pp. 123] “Each of these so-called legacy systems may provide invaluable support for a particular business activity. But in combination they represent one of the heaviest drags on business productivity and performance now in existence.” In the late 1990-s, one solution was COTS ERPs, with a single database back-end. “The database collects data from and feeds data into modular applications supporting virtually all of a company’s business activities-across functions, across business units, across the world.” (Davenport 1998, pp.124).

This large scale adoption of the buy approach was further accelerated because of pressures related to the Y2K crisis. Most organizations did not have the time or resources to successfully redesign their business process systems to be Y2K compliant (Gould 1999). Increased monetary resources and reduced time led many IT departments to purchase COTS ERP packages that were Y2K compliant. By the end of 2001, enterprise level systems sales were at $47 billion and forecasted to be grow in the double digits (Johnston 2002).

On the other hand, COTS implementations are also thought to have brought significant disadvantages for the organizations that have implemented them. Early implementations of ERP systems were plagued with time and budget overruns (Abts 2002; Taeschler 2002). In some prominent cases, such as Nike, Foxmeyer and Hershey (Johnston 2002), the organizations claimed that the COTS implementation crippled the organization’s core operations. As pointed out in (Eckerson 2002), COTS implementations were found to largely take about the same time as customized applications. Corning Corp. found that the amount of data input was 10 times more with the COTS implementation than with earlier customized systems (Ross 1999). COTS implementations have been found to be more “volatile” than customized applications primarily because of the frequency with which vendors release upgraded versions of their software, with an increasing number of modules in a COTS implementation leading to greater volatility because of differential upgrade releases amongst the modules (Abts 2002).

The loss of competitive advantage has been another important issue with COTS based ISs. COTS implementations are usually not customized because of issues with costs and future compatibility with vendor upgrades (McManus 2003). This implies that the organization’s data and business processes have to conform to the new model offered by the implementation. Thus, the COTS IS significantly reduces the degree of differentiation of the organization’s business processes and data items compared to its competitors, who also have the same COTS implementation (Ulrich 2004).

Finally, COTS ISs have been found to lack flexibility because of the lack of customizability, and dependence on the vendor’s ability and willingness to upgrade the software as the business environment changes (Vedaris 2004). This problem is further aggravated by the often long time lines that accompany a large scale COTS implementation. For example, the COTS implementation at Corning took approximately six years, and led to the entire organization being dependent on one vendor for its upgrade cycles, in a competitive manufacturing environment.

Based on the work discussed above, we can conclude that, while COTS based ISs offer certain advantages over building a customized, large scale IS, they also offer significant disadvantages. In spite of these disadvantages, the current reality is that most organizations are opting to purchase/rent their large scale ISs as opposed to customized construction. However, several trends indicate that this may change. First, the disadvantages of COTS based solutions are becoming more apparent at the executive level. For example, a survey of 50 European organizations revealed a 92% dissatisfaction rate with their ERP implementations (Group 2000). Second, the phenomenon of overseas outsourcing has led to reduced development costs, making customized development more attractive (Singh and Walden 2003). Third, emerging technologies such as easy to use interface development environments (common examples include Visual Basic, Visual Café, Oracle Developer), web services that allow easier integration and reduced costs of relational DBMSs have made it conceptually easier to design and implement customized solutions, in contrast to using older technologies for networking and interface development (Baker and O'Sullivan 2001). These trends reduce the disadvantages of customized IS development, so that both the build and the buy choices are becoming viable, and the build versus buy decision in the future is likely to become increasingly important.
The Role of Systems Analysis and Design in Large Scale Organizational ISs
It has been widely recognized that the systems analysis and design (SAND) phases of software development are critical to ensuring the success of the system, both from a technical and a business perspective (Alter 2006; Alter and Browne 2005; Bajaj et al. 2005; Bajaj and Ram 2002). However, the recent trend in COTS selections for IS development have reduced the usage of formal systems analysis when evaluating a system. Typical systems analyses during the selection of COTS involve a listing of critical activities by end-user groups, and demo-based usage of a set of COTS packages, with the intention of selecting one from the set (Verville and Halingten 2001). A critical difference between SAND methods used for customized systems versus COTS systems is the lack of data models and detailed process models when evaluating COTS systems, as opposed to considering customized systems. This reduced usage of systems analysis is primarily because COTS systems are seldom customized, for reasons discussed in the sections above. Since COTS selection occurs from a fixed, often small, set of vendors, who offer their own data and process models in their COTS, the resources required to create data and detailed process models of the actual organization are usually not expended in a COTS implementation.
We suggest that the lack of an attempt to match the data models of the organization with that of the COTS has the following implications: a) in a market with several vendors, it may be possible to omit consideration of a COTS system whose data model is a closer match, leading to poorer user acceptance and increased user-effort in switching to the new system, and b) the cost of migrating the legacy data increases for a COTS whose data model is a poor match for the data model of the organization.

A lack of a detailed data and process model of the organization also prevents a meaningful analysis of a build versus buy comparison. First, there is no basis for estimating the resources required to build a customized IS, without understanding the size of the database, and the complexity of the user interface and business logic. Second, the degree of uniqueness of the users needs cannot be determined without a detailed data and process model. Customized applications are usually considered more desirable for unique needs (McManus 2003). The lack of a data and process model may enhance the tendency to classify a large portion of the business activities of an organization as “commodities” that can be served/substituted by off-the-shelf systems. In extreme cases, this can lead to a significant loss in competitive advantage of the organization.

Based on the above discussion, we contend that the role of systems analysis will become increasingly important in the success of large scale ISs, as the build versus buy decision becomes more critical. While SAND is taught in most IS curricula and several modeling languages exist, we propose that there are two major shortcomings that we need to address:

a) The examples we examine in most cases relate to support small scale systems. Little is known about the abilities of the models (and the software tools that support these models) to scale up to large scale requirements analysis and information system design. E.g., What is the value added of a particular CASE tool if we need to collect the process and data requirements of, say, 100 plus business roles in an organization and design a custom IS for them? In the large majority of cases, IS graduates from our curricula are not adequately trained to perform SAND on a large scale.

b) As mentioned earlier, most organizational systems can be modeled as a database back-end, with front-end screens to support data –entry, modification and report generation activities. Most of the modeling languages that we teach are general purpose, and exist to support the creation of general code, rather than the creation of large scale organizational systems. E.g., the Unified Modeling Language (UML) traces its roots back to facilitating the creation of object oriented code (Booch 1994). We contend that there is a need for specialized modeling languages and tools that map more directly to the constructs of large scale organizational systems: database tables and screens.

As discussed above, even though there is disillusionment with several COTS implementations the majority of organizations still purchase these implementations. What prevents organizations today from seriously considering the construction of customized ISs, as opposed to renting/purchasing COTS solutions? We list several reasons below:
a) As mentioned earlier, most IS personnel today are not adequately trained in a SAND methodology that scales to handling large scale business requirements.

b) There is a lack of real knowledge about the requirements for a software tool that can scale well to large scale business requirements (Alexander et al. 2005).

c) COTs systems are often sold to non-IS personnel, at the executive level who are indifferent usually to whether a system was custom-developed or bought off-the-shelf. (Applegate et al. 2006, pp. 424)

d) The lack of a comprehensive methodology and prior experience in custom building has led to an unfavorable risk/reward perception amongst IS personnel, when it comes to building. In other words, it is easier for an IS person to be a customer of a COTS vendor (Verville and Halingten 2001) than it is to be a provider of a custom built system to the end-users, especially when the senior executives seem to desire a COTS system and the management style in the organization is hierarchical (Khalid 1998).

The discussion above highlights an emerging need for a new breed of modeling language and supporting CASE tool: one that can support the development of a custom-built large scale IS in a business context. As a first step in this area, we next present the Entity-Relationship-Activity (ERA) model and CASE tool that has been developed specifically to support the application of SAND in a large scale business context.
The ERA Model And CASE Tool: Analyzing the Requirements of Large Scale Business Information Systems

The underlying philosophy behind the ERA model is that the large majority of organizational systems that support business processes are database driven systems. Essentially, the ERA model models a large business application as a back-end database application, stored in a relational database, with a set of screens that allow the user access to view and modify the data. Business logic can be a) modeled as part of the back end design, where a good design automatically prevents incorrect data from being inserted, b) stored in the form of stored procedures or front end screen logic or c) stored as database triggers, if it is deterministic. An example of a) is providing foreign key constraints that prevent customers from making purchases if these customers do not first exist in the customers table. An example of b) is checking the salary information for a new employee, as it is being entered, to ensure it meets required criteria such as being over the minimum wage. An example of automated logic in c) is a situation where if a customer purchases more than $1000 of merchandise, they automatically become a “gold” customer. We note that implementation facilities to support a), b) and c) are available on most large scale DBMSs.
The scalability problems with large scale business information systems have to deal with managing the diverse requirements of the large number of users or organizational roles the system needs to support. Thus, if a system needs to support, say, over 1000 users, then modeling and integrating the data and process needs of these users is the challenge. The overall goal of the ERA model is to provide a SAND model and tool that facilitates the capture of user requirements (both data and process) on a large scale, and then converts them into a code plan to develop the information system.

To model data, the ERA model draws on the well known Entity Relationship model (ERM) (Chen 1976). While various extensions of the ERM have been proposed in the academic literature, the ERA model uses a streamlined version of the ER model, consisting of entity sets, (n>=2 -ary) relationship sets, attributes of entity sets, attributes of relationship sets, primary keys of entity sets, superclasses and subclasses. Each subclass can have only one superclass. Concepts such as cardinality and participation of relationships, the existence relationship, categorization, and aggregation were deliberately omitted from ERA in order to make it easier to use in the field, for large scale requirements gathering. For example, the cardinality concept in ERA assumes that all relationships are many-many, which is a generalized superset that covers the different cardinalities: one-one, one-many and many-many. In other words, concepts in ERA were chosen to facilitate large scale requirements gathering and systems modeling, at the expense of some of the more nuanced concepts typically found in extensions to the ERM.

ERA borrows from well known ideas of process decomposition to model processes. An activity in ERA is defined as an action that accesses or modifies data. A high level activity in ERA can be decomposed into smaller activities. Each activity can have at most one parent. Thus each high level activity forms the root of its own activity tree. Primitive activities exist as leaves of the different activity trees. A primitive activity is one that accesses information that can fit on one screen, in the judgment of the analyst. Primitive activities are either automatable (meaning no user input is required) or non-automatable (user input is required). Each activity has a responsibility (organizational role) linked to it.

Once the activities are depicted, the ERA model supports links between the activity and data as follows. Each data object (entity set or relationship set) is linked to at least one primitive activity in either a READ or a READ/WRITE mode. This ensures that each data object is “consumed” by at least one activity. Conversely, each primitive activity has to “consume” at least one data object. Again, for the purpose of scalability, we consider data objects at the entity or relationship level, not at the attribute level. Figure 1 illustrates the diagramming conventions in ERA.

[image: image1.wmf]ENTITY SET NAME

Entity_Attribute

i

(underlined if primary key)

Relationship_Attribute

i

RELATIONSHIP

SET

NAME

IS A

Role_name

Activity Name

(underlined if primitive)

Link from relationship

set to entity set, from

subclass to

superclass

and from role to primitive

activity set

Link from

Super activity (base)

to sub

-

activity (arrow)

Read only link from

Primitive activity (base)

to data object (arrow)

Read

-

and

-

write link from

Primitive activity (base)

to data object (arrow)

R

W

Automatable

(used if activity set is

automatable

)

Sub/

Superclass

hierarchy

Figure 1. Diagram Conventions in ERA

More detailed information on ERA, including diagramming conventions and examples can be found at (Bajaj 2004).

3.1 Utilizing the ERA Methodology for Large Scale Requirements Gathering

The ERA methodology is based on a divide-and-conquer approach. The first step is to divide the entire target end-user group into sub-groups, so that the subgroups are cohesive (share a large portion of their data and have closely related business functions) and manageable. Based on our experience, we define a manageable sub-group as one whose data model will be of the order of 100 entity sets or less.

Once the subgroups have been created, the analysts meet with the different sub-groups in order to create data diagrams. These meetings are similar to JAD sessions (McConnell 1996). The output of this activity is a single data diagram for each subgroup. The different data diagrams are then examined for ambiguities, errors and overloading of terms. E.g., One subgroup may use customerId to uniquely define a customer, while another may use customerNo. Corrections are made to each sub-group’s data diagram based on examination of the other diagrams. Once the diagrams are created, the ERA CASE tool (Bajaj 2004) is used to store the information in the diagrams. In the interests of scalability, the ERA CASE tool does not offer the ability to create diagrams in the software. This prevents analysts from expending resources constructing complicated diagrams when faced with large scale applications. Instead, the CASE tool acts as a repository for all the information elements in the diagrams. Hence, when using ERA in the field, analysts create multiple diagrams on paper or some other medium, resolve different diagrams outside of the tool and then finally input the corrected information about each subgroup’s data model into the CASE tool.
The data diagrams for each sub-group act as the backbone for defining the activities that users perform, and based on the data they use, activity trees are diagrammed for each sub-group. Finally, the primitive activities are linked to the different data objects in the data diagram. Figures 2 and 3 illustrate this with a complete ERA diagram for a simple automobile garage application.

[image: image2.wmf]Customers

Cars

RepairJobs

CustomerID

CustName

CustAddress

CustPhone

CustEmail

CarID

CarModel

CarYear

CarLicenseTag

RepairID

RepairDate

RepairTotal

RepairPaid

?

CustOwn

Cars

CarIn

RepairJob

Manage Garage

Manage Cars

Manage Owners

Manage Repairs

Manage Customers

Manage Ownership

Data (ER) Schema

Activity (A) Schema

Office

Assistant

Office

Assistant

Office

Assistant

Car

Mechanic

Figure 2. ERA diagram for an Automobile Garage Application: Data & Process Schemas

[image: image3.wmf]Customers

RepairJobs

CustOwn

Cars

CarIn

RepairJob

Manage Cars

Manage Repairs

Manage Customers

Manage Ownership

Customers

Cars

Cars

Cars

W

W

W

W

W

R

R

R

Figure 3. ERA diagram for an Automobile Garage Application: Linking primitive activities to data objects

The ERA methodology facilitates the creation of several sub-diagrams for data and activities for different sub-groups in parallel. Figures 4, 5 and 6 show screenshots of the ERA CASE tool’s interface screens to create entity sets, relationship sets and activities as they are added to the ERA repository.
[image: image4.wmf]

Figure 4. Creating the Cars Entity Set in the ERA CASE Tool

[image: image5.wmf]

Figure 5. Creating the CustOwnCars Relationship set in the ERA CASE Tool

[image: image6.wmf]

Figure 6. Creating the ManageRepairs Activity set in the ERA CASE Tool.

Figure 7 illustrates how the Manage Repairs activity set is linked to the relevant data objects in the ERA tool.

[image: image7.wmf]

Figure 7. Linking the ManageRepairs Activity to Data Objects in the Data Schema

The figures above illustrate the ease of use inserting, updating and deleting objects and links between objects in the repository of the ERA CASE tool.

After the information is input in the ERA CASE tool, a code plan can be printed out. The code plan lists all the entity sets and relationship sets as tables. The comments fields that apply to every object in ERA can be used to capture special requirements such as foreign keys, table sizes and the meanings of certain attributes. The non-automatable primitive activities are shown as screens. Again, the comments fields can be used to capture information such as activity order and a logical description of each activity. Finally, automatable primitive activities are shown as DBMS triggers in the code plan. For each activity, the data objects it consumes are also shown. This information, combined with the description of the activity in the comments section provides insight into the complexity of constructing that particular screen or trigger.

It is important to note that ERA is not a code generation tool; rather, it is used at the conceptual modeling level, where it can be used to capture detailed user requirements for large scale ISs. The output is a code-plan that is independent of what DBMS will be used, or what technology will be used to generate the screens and host them. Next, we illustrate the usage of ERA in a real-world situation.
Using ERA in the Field: The Case of Urban Rejuvenation Corp.(URC)
URC
 is a non-profit based in a large USA city. One of its key functions is to educate community leaders in urban neighborhoods on how they can rejuvenate their neighborhood. To this end, URC conducts classes at numerous conferences that it holds across the country. On average they spend approximately $1 million a year on classroom training. Approximately 20 people out of the 100 that work at URC are directly focused on classroom training. The end-users at URC were using a legacy system that was based on a small paradox database. This application, with a command line interface, was not able to cope with the scope of their operations.
The decision was made in 2002 to buy a COTS system for $150,000 that was geared towards educational training delivery. Unfortunately, no effort was made to analyze the existing data and process requirements of the end-users, and the COTS system was an extreme failure, to the extent of never even being implemented. Subsequent to this failure, an external consultant was called in to perform a detailed data and process analysis of the end-users, and to recommend a build or a buy solution.
The consultant used the ERA model and CASE tool, and took approximately 40 hours to come up with a detailed data and process model. The modeling was performed by breaking the users into groups. The data model was constructed first, followed by the process model. At the end of the engagement, URC had a code plan for what their new system should support. A search of the marketplace revealed no existing COTS solution that matched their needs. The decision was made to outsource the construction of a customized system based on the code plan generated by ERA.

The customized system consisted of approximately 70 back end tables, and 90 screens. Feedback from the construction team indicated they found the ERA code-plan to be extremely useful to a) determine the scope of the construction and b) ensure they were meeting user needs as the construction progressed. The system was constructed in 120 days, at a cost of approximately $75,000, including data migration and user training. Feedback from end-users indicated that it met with all the diverse data needs of the group of 20 users, and allowed for better access, since it was available over the internet. This case study illustrates the real-world scalability of the ERA model and tool, and provides some estimates of approximate time and costs required when utilizing ERA to capture large scale requirements.

Conclusion

The decision to build or buy a large scale information system is becoming increasingly important. While historically, organizations built customized large scale ISs, the trend over the last decade, has reversed overwhelmingly to purchasing/renting of COTS based systems. However, we see the choice of building custom ISs becoming increasingly attractive, for the following reasons: a) organizations have become increasingly more aware of the disadvantages of COTS based ISs, b) technologies to build custom ISs have become easier to understand and manage, c) the resources required to outsource the construction of customized ISs have become less, as programming costs have declined, and d) organizations have become increasingly aware of testing and matching an IS system before approving any large capital outlay.

Given this choice of build versus buy, systems analysis and design will play an important role in documenting end-user data and process needs. A detailed documentation will provide: a) a basis for estimating the resources required to build a customized system, b) an ability to compare the functional “fit-gap” between the end-user requirements and the features offered by different COTS systems and c) the ability to better manage the construction phase if custom development is selected. In this work, we described how one possible model: the ERA model and its supporting CASE tool can be used to document data and process requirements on a large scale. The real-world case study example provides a flavor for how easy the ERA model is to use with large scale requirements. ERA has been successfully used in many organizations, and has also been taught in the classroom, in various forms, to over 200 graduate and undergraduate students.

The work presented here can be extended in several ways. First, we plan to test the scalability of ERA more formally with laboratory based experiments. Second, while the selection of the concepts in ERA was based on our intuitive understanding of concepts that promote scalability, it would be interesting to evaluate the richness versus complexity trade-off by adding concepts such as weak entity sets to ERA. Finally, we plan to evaluate the impact of the ERA methodology on software engineering practices of an organization, i.e., measure the extent to which utilizing the ERA methodology promotes conformity with software engineering aspirations such as achieving higher capability maturity levels.

REFERENCES

Abts, C. (2002), "COTS-based Systems and Make vs. Buy Decisions: The Emerging Picture," in International Workshop on Reuse Economics. Austin, TX.

Abts, C. and Boehm, B. (1998), "COTS Software Integration Cost Modeling Study." Los Angeles, CA: University of Southern California.

Alexander, I., Robertson, S., and Maiden, N. (2005), "What Influences the Requirements Process in Industry? A Report on Industrial Practice " in 13th IEEE International Conference on Requirements Engineering (RE'05): IEEE.

Alter, S. (2006), The Work System Method: Connecting people, Processes and IT for Business Results. Larkspur, CA: Work System Press.

Alter, S. and Browne, G. (2005), "A Broad View of Systems Analysis and Design," Communications of the AIS, 16 (50), 981-99.

Applegate, L.M., Austin, R.D. and McFarlan, F.W. (2006), "Organizing and Leading the IT Function," in Corporate Information Strategy and Management Seventh Ed. ed.: McGraw-Hill Irwin.

Bajaj, A., Batra, D. Hevner, A., Parsons, J. and Siau, K. (2005), "Systems Analysis and Design: Should We Be Researching What We Teach?," Communications of the AIS, 15 (April), 478-93.

Bajaj, A. (2004), "The ERA Model and Methodology," Vol. 2004. Tulsa, OK.

Bajaj, A. and Ram, S. (2002), "SEAM: A State-Entity-Activity Model for a Well Defined Workflow Methodology," IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 14 (2), 415-31.

Baker, S. and O'Sullivan, D. (2001), "Positioning CORBA, J2EE, web services and other middlewares," in Third International Symposium on Distributed Objects and Applications: IEEE.

Booch, Grady (1994), Object Oriented Analysis and Design with Applications. Redwood City: Benjamin/Cummings.

Brooks, F.P. (1987), "No Silver Bullet: Essence and Accidents of Software Engineering," IEEE Computer, 20 (4), 10-19.

Chen, P.P. (1976), "The Entity-Relationship Model: Towards a Unified Model of Data," ACM Transactions on Database Systems, 1 (1), 9-36.

Davenport, T.H. (1998), "Putting the Enterprise Into the Enterprise System," Harvard Business Review, 76 (4), 121-31.

Eckerson, W.E. (2002), "The Rise of Analytic Applications: Build or Buy?," The Data Warehousing Institute (Ed.) Vol. 2004. Chatsworth, CA.

Gould, L.S. (1999), "Reinventing ERP After Y2K," Automotive Design and Production (Ed.) Vol. 2004.

Group, PA Consulting (2000), "Unlocking the Value in ERP," Vol. 2000. London, UK.

Higaki, W. H. (1995), "Applying an Improved Economic Model to Software Buy Versus Build Decisions," Hewlett-Packard Journal, 46 (4), 61-66.

Johnston, S.J. (2002), "ERP: Payoffs and Pitfalls," in Harvard Business School: Working Knowledge.

Khalid, S. (1998), "Maintaining Professional Competence in Innovation Organizations," Human Systems Management, 17 (1), 69-87.

McConnell, S. (1996), Rapid Development: Taming Wild Software Schedules: Microsoft Press.

McManus, D. J. (2003), "A Model of Organizational Innovations: Build versus Buy in the Decision Stage," The International Journal of Applied Management and Technology, 1 (1).

MindBridge (2004), "Build versus Buy: Which Software Implelementation Strategy Should You Choose for Your Organization?," Vol. 2004.

Ross, J. (1999), "Dow Corning Corporation C: Transforming the Organization," Vol. 2004. Cambridge, MA: MIT Sloan.

Singh, P. and Walden, E.A. (2003), "Flexibility and Cost in Information Technology Outsourcing: Balancing Opposing Goals," in Ninth Americas Conference on Information Systems. Tampa, FL.

Taeschler, D. (2002), "Metrical Approaches to Customer Equity Through CRM," in Montgomery Research CRM Project Vol. 3.

Ulrich, W.M. (2004), "Stop Treating the Symptoms and Treat the Disease," in Business Intelligence Journal Online.

Vedaris (2004), "The Buy Versus Build Decision," Vol. 2004.

Verville, J. and Halingten, A. (2001), Acquiring Enterprise Softwar: Beating the Vendors at their Own Game: Prentice Hall.

� The name of the organization has been changed for confidentiality.

Proceedings of the 5th AIS SIGSAND Symposium on Research in System Analysis and Design, Vancouver, Canada, May 13-14, 2006
9

