
Analyzing Models For Current World Wide Web Applications

Using A Classification Space And Usability Metrics
Akhilesh Bajaj
Ramayya Krishnan
Emails: {akhilesh, rk2x}@andrew.cmu.edu

The Heinz School

Carnegie Mellon University

ABSTRACT
The last few years have seen a tremendous growth in the number of applications being developed on the world wide web (WWW). Models for analyzing and designing these applications are only just beginning to emerge. In this work, we propose a 3-dimensional classification space for WWW applications. Next, we propose metrics for WWW applications along one of the dimensions of this space. Finally, we analyze two models for WWW applications based on the degree of information their schemas would provide for each metric. This work provides a method to analyze existing models for WWW applications, and also provides directions for the evolution of these models.

1. INTRODUCTION

Over the last five years, there has been a tremendous growth of applications being developed to run over the world wide web (WWW) (Berners-Lee et al. 1994). Several technologies are in vogue for writing these applications (Bhargava and Krishnan Forthcoming). Depending on the kind of technology used, different classes of applications can be created using the WWW as the medium of transport. Yet very little information exists as to the suitability of current modeling methods for WWW application development. In this work we take a first step towards answering this question. We present a classification space for WWW applications. Next, we present a list of usability metrics that would apply to some of these classes of WWW applications. These metrics are useful because they indicate usability information that future modeling methods should provide about WWW applications, prior to actually designing or building the application itself. Based on these metrics, we examine two modeling methods for the class of WWW application they were designed to support.

In this work, we define a WWW application as one that runs using the hypertext transfer protocol (HTTP) as the transfer protocol. In our view, this is what differentiates WWW applications from other networked applications. We define an application as consisting of a series of zero or more events. We define an event as a subset of an application that consists of at least one user input, followed by some processing.

The rest of this paper is as follows. In section 2, we present a 3-d classification space for WWW applications. In section 3, we propose a list of usability metrics along one dimension of the space. In Section 4, we examine two modeling methods for the degree to which they fulfil these metrics for different classes of WWW applications. Directions for future research and the conclusion are in section 5.

2. A CLASSIFICATION SPACE FOR WWW APPLICATIONS

Networked applications in general differ along several dimensions, such as the degree of state maintained on the server, the class of user, the type of user interface and the programming language used. Before identifying dimensions for classifying WWW applications (which are a subset of all networked applications) we identify certain features that are shared by all WWW applications. First, all WWW applications are inherently client/server. The WWW client is a web browser, which talks to a WWW server using HTTP. Second, the HTTP protocol is inherently stateless
, which means that the server does not maintain the state of the client’s application. Third, the bulk of processing is usually done on the server side, although this is not necessary any more. Fourth, the direction of data is two-way. Multimedia data
 flows from the WWW server(s) to the client, while alphanumeric data
 flows from the client to the server. Finally, a large percentage of WWW applications are accessed by heterogeneous, naïve users. These features are common to all WWW applications. This is also what makes WWW applications different from networked applications running on some other protocol, such as CORBA
 (Common Object Request Brokered Architecture) or RPC (Remote Procedure Call).

Next we propose three dimensions along which WWW applications differ: the degree of structure of the WWW pages in the application, the location of processing and finally, the degree of support for interrelated events within an application.

2.1. Degree Of Structure Of The WWW Pages

This dimension looks at the degree of structure of the pages that make up a WWW application. Values along this dimension include pages following the Hyper Text Markup Language (HTML), pages following the Extensible Markup Language (XML) (Khare and Rifkin 1997) and pages with completely flexible content, determined by the application. We now explain each of these values.

Most WWW pages today are in HTML format. An HTML page presents a hypertext interface to the user. HTML tags do not convey any meaning as to the structure of the contents of the page. WWW clients simply interpret the tags as display instructions.

The second value along this dimension is XML format. XML is an emerging standard for client browsers, and is a subset of the Standard Generalized Markup Language (SGML). XML allows the definition of the structure of the page using tags that the creator of the document can define at will. It is hoped that using tags for purposes other than merely display
, as in HTML, will solve many of the problems that plague HTML pages. E.g., A group of organizations could agree on a set of tags that convey the same content. This will facilitate the development of applications that share information across these organizations, by greatly reducing the amount of procedural code that would need to be written to create structure from a flat HTML format. An XTML interface is also hypertext based, but with content added on.

The third value along this dimension is complete flexibility of user interface. This is now possible by using Java applets, that allow a browser to download a document that contains information that allows the execution of a Java applet (Arnold and Gosling 1996). The applet is stored on the WWW server in bytecode format, and executed on the client machine. The applet can be used to create interfaces that are completely flexible. E.g., Different chatroom applets on the WWW present different interfaces to users. Complete flexibility allows pages to be structured, and presented in any way desired.

Next, we discuss the second dimension: the location of processing.

2.2 The Location Of Processing Of The WWW Application

This dimension looks at whether the processing (if any) takes place on the server side, or on the client and server side. Hence we have four values for this dimension: no processing, processing only on the server, processing only on the client and processing on the client and server. We now explain each of these values.

A large percentage of WWW pages are used for information display only. A WWW application with no processing would consist of a list of linked WWW pages. Note that processing would still be necessary for following the HTTP protocol on both client and server side. However, there is no processing of content.

Processing only on the server arises because of the Common Gateway Interface (CGI) (net.genesis and Hall 1995). The interface, allows a browser to download a WWW page, and then to submit alphanumeric data to a WWW server. The WWW server receives the data and passes it to a CGI script. The data is passed using environment variables on UNIX systems, and temporary files on Windows-NT systems. The processing program, which can be in any programming language, reads this data and processes it. The results are passed back to the client, either directly by the program or via the WWW server. The result is usually another page, perhaps generated dynamically. Note that no processing takes place on the client side here.

Processing only on the client involves client-side scripting or Java applets. In client side scripting, the page includes programs in an interpreted language such as Javascript or Vbscript. E.g., the function is coded in the HEAD of an HTML page, and then accessed in the BODY of the page. There are a few problems with using client side scripting for large amounts of processing (Bhargava and Krishnan Forthcoming). First, the script is interpreted, and is slower than compiled programs that usually run on the server side. Second, the source code is available to the client, which may be undesirable. Third, WWW clients may not be suited to jobs requiring extended clients. In general, light processing like checking input is performed using client side scripting.

Java applets also allow client side processing. The downloading and execution of an applet in the browser allows a larger amount of processing to be handled by the client than is the case with client-side scripting. Note that if Java applets are used, it is possible to bypass HTTP, and to establish a persistent state network connection using Java’s extensive networking support. Since this bypasses HTTP, we do not consider this further in this work. Typically, Java applets are used to create user-interfaces. However, they can also be used to perform more processing on the client side.

Processing on both the client and server means that the processing of events in the application is divided between the client and the server. This involves the use of CGI (for processing on the server) and of client-side scripting or Java applets (for processing on the client).

Next, we discuss the third dimension: the degree of support for interrelated events within an application.

2.3 The Degree Of Support For Interrelated Events

This dimension measures the degree to which the events within the WWW application can be interrelated to each other. We propose 3 values along this dimension: no events, only independent and idempotent (I&I) events and sets of I&I events interspersed with sequences of interrelated events. We now explain each value.

No events would occur in applications with zero processing. This would happen in an application that simply displayed pages, and allowed for hypertext navigation between pages.

Events processed on WWW servers are I&I events because of the stateless nature of HTTP, i.e., the server can not keep track of events in the application
. E.g., if a CGI application requires the client to supply a series of inputs that are written to server files, there will be no way to keep track of the state of how many write-events have been done by a client, or whether a client decided to repeat some write-events by resending some forms of the application
.

In a well-designed WWW application, the events that are generated on the WWW server should be idempotent (each event in an application instance can be run multiple times without changing the outcome of the application instance). Also, server events should belong to event sets, i.e., there should be no interdependence between the different events in the application, represented by different pages. This is needed because it is impossible to keep track of the state of the application instance between events. So the only solution is to clump all dependent input from users in an application on one page, as one event.

Sets of I&I events interspersed with sequences of interrelated events arise in the case of processing on the client and server side. Note that a client can maintain state of the application. Thus, in a WWW application, interrelated events are processed on the client side, and I&I events are processed on the server side
. This kind of application will consist of a sequence of interrelated events (on the client), followed by a set of server (I & I) events, followed by another sequence of client events, etc.

Our three dimensional space for classifying WWW applications is shown in figure 1. An application is classified by a triple that represents values along the three axes. E.g., a WWW application using a HTML pages, with Javascript and CGI sharing the processing would be (HTML, Client and Server, Sequences of interrelated events interspersed with I & I events). A WWW application that displayed HTML pages would be (HTML, no processing, no events).

Our classification scheme allows us to identify certain desirable features in each class of applications. Identifying desirable features in turn provides directions for the kind of information that models for WWW applications should convey to their analysts and designers. Thus, metrics can be defined along each dimension in our classification scheme. In this work, we propose usability metrics along the Structure of Pages axis. These metrics are described next.

[image: image1.wmf]Degree of

Structure of

Pages

Location of Processing

Degree of Support for

Interrelated Events

HTML

XML

Complete

Flexibility

No Processing

Server

Client

Client and Server

No Events

Only I & I events

Sequences of

interrelated events

 interspersed with

sets of I & I

events

Figure 1. 3-d Space for Classifying WWW Applications

3. USABILITY METRICS ALONG THE STRUCTURE OF PAGES AXIS

Several metrics have been proposed for hypermedia documents (e.g., see (Garzotto et al. 1995) for an extensive listing). We present what we view as a canonical set of two quality-metrics, i.e., the set covers most of the abstractions covered in quality-metrics proposed by others, and each metric in the set is reasonably orthogonal to the other. These first two quality-metrics attempt to measure the readability of the HTML and XML documents in the application. Two factors influence readability: coherence as a positive influence (Thuring et al. 1995) and cognitive overhead (Conklin 1987) as a negative influence.

3.1 Coherence

This metric is used to represent the ease with which readers can form mental models of a possible world, from the hypertext document. Local coherence is the degree to which each specific document conveys a mental model. E.g., A document that uses conjunctions, paragraphs and other writing techniques, with appropriate multimedia illustrations provides higher local coherence than one that simply contains free flowing text. Global coherence is the degree to which the reader can form a macro structure across documents. E.g., An application that maintains a preservation of context across nodes (perhaps by using HTML frames) is likely to be more globally coherent than one whose documents are disjoint fragments of context, with no cues in each document as to the pre-context or the post-context.

3.2 Cognitive Overhead

The reason for this metric comes from the limited capacity of human information processing. In hypermedia applications, cognitive overhead is determined primarily by difficulty of navigation ((Botafogo et al. 1992) define a metric called stratum that is similar in concept), user-interface adjustment (Thuring et al. 1995) and low consistency (Garzotto et al. 1995). E.g., an application that does not permit backward navigation, or that has arbitrary jumps from each page is less easy to navigate than one that supports navigation in both directions, and that has a smaller number of jumps, with less “cognitive distance” per jump. An application that presents changing fonts, colors and layouts on each page requires more user interface adjustment than one that presents a uniform appearance between pages. An application that depicts say, sound multimedia objects differently in different pages is less consistent, and would impose greater cognitive overhead on the reader.

The previous metrics related to HTML and XML values along the axis, since they are based on the fact that the interface for these structures is hypertext.

The next two metrics relate only to the XML and complete flexibility values. They arise from the fact that applications with XML pages or flexible interfaces have structure.

3.3 Cohesion Of Information In A Document

This metric represents the need that information in a single page is cohesive in the real-world it represents. E.g., if the document contains (tag demarcated) information on customers alone, then it is more cohesive, and hence better, than a document that contains information on customers as well as sales.

3.4 Coupling Of Information Across Documents

This metric represents the need that information in an XML document should be independent of information in other XML documents in the application. E.g., if the customer name and address are duplicated across XML documents in the application, the coupling will be more, and hence the application will be of lower quality, than if only a key field like the customer number is duplicated across documents
.

The following metric pertains only to the complete flexibility value on the dimension. It measures the usability of a non-hypertext interface.

3.5 Usability Of Non-hypertext Interfaces

There is a great deal of work on the usability of human interfaces (e.g., (Nielsen 1993; Preece 1994)). We define the following factors as influencing the usability of user interfaces. These factors are borrowed from (Nielsen 1993), and represent a synthesis of over 90 published studies in the area of user interface design. The learnability of the interface is the perceived ease of use of the application by novice users. Efficiency of use is the steady-state performance, once the learning curve flattens out. Memorability of the interface is the amount of time that elapses before users slip back on the learning curve.

The sixth quality metric comes from the fact that all applications run on a network, and that network delays, slow servers, etc. can lead to long download times. It is hence applicable to all values along the dimension.

3.6. Anticipated Download Times

This metric represents the time it will take to download pages from the WWW server. It is determined by three factors
: the server capacity, the size of the objects that would appear on each page of the application, and the number of different HTTP requests that need to be sent to create each page of the application. Applications on servers with greater processing and disk input/output capacities, with smaller size objects on each page and requiring fewer HTTP requests per page are likely to have less download times.

Note that the metrics we have proposed here stem from our classification scheme, and are for WWW applications, not for models of WWW applications. These metrics point the way for information that should be derivable from schemas of models that are used to model WWW applications. Thus, one can imagine a future model for WWW applications whose schemas allow the derivation of coherence, cognitive overhead, anticipated download time and the cohesion and coupling of information.

The metrics are summarized in figure 2.

We next evaluate two well known models that have been used to model (HTML, no processing, no events) WWW applications. We select models for this class of applications for two reasons. First, we have developed usability metrics for the structure of pages dimension, whereas we do not yet have metrics for other dimensions in our classification. Second, to the best of our knowledge, most models that have been proposed to create WWW applications have concentrated on (HTML, no processing, no events) applications. The object is not to criticize either one of the models we evaluate, but to demonstrate the use of our classification scheme for analyzing models, and the usability metrics as providing directions for development of models.

[image: image2.wmf]Degree of

Structure of

Pages

Location of Processing

Degree of Support for

Interrelated Events

HTML

XML

Complete

Flexibility

Coherence

Cognitive Overhead

Cohesion

Coupling

Usability of

non-hypertext

interface

Anticipated

Download Times

Figure 2. Usability Metrics for values along the Degree of Structure of Pages Dimension

4. EVALUATING WWW APPLICATION MODELS

4.1 The Relationship Management Methodology (RMM)

RMM (Isakowitz et al. 1995) is a model for hypermedia design of the front-ends of applications. As such, it fits in best with modeling WWW applications of type (HTML, no processing, no events) It can also be used, in conjunction with other models, to models other classes of WWW applications. In RMM, there are entities with attributes and 1:1 and 1:n associative relationships. The subset of attributes of a single entity that are shown on a single HTML page constitute a slice. Navigation between slices of the same entity is done using uni- and bi-directional links. Navigation across entities is done using indices, guided tours or groupings. An index is a table of contents to a list of entity instances (of the same type). A guided tour implements a linear path through a collection of items, allowing the user to move forward or back, one step at a time. Guided tours can also be circular, linking the first and last elements of the tour. The grouping is a high level menu that provides access to other features such as indices and guided tours.

Creating an (HTML, no processing, no events) application using RMM involves drawing the entity-relationship (ER) diagram first. Next, different slices are constructed from the ER diagram, determining how information from within entities will be grouped for display purposes. Next, the slices are organized into pages that will be viewed in the application. After this, navigation paths (with the option of conditional predicates) are constructed between slices. E.g., if faculty teaches courses, then the teaches relationships means that all courses taught by a faculty member must be accessible. The taught by relationship means that all faculty members teaching a course must be accessible.

We next explore the extent to which RMM provides measures for the usability metrics in section 3 pertaining to (HTML, nor processing, no event) applications.

Coherence: There is no formal support for either local or global coherence of an application modeled as an RMM schema.

Cognitive Overhead: There is no formal support for determining cognitive overhead of an application from an RMM schema.

Download time: There is some formal support in the physical diagram that is part of the RMM schema
. The physical diagram lists the size of each object, which gives some measure of the download time for each page.

We note that while there is no formal support for coherence or cognitive overhead, (Isakowitz et al. 1995) provide heuristic guidelines for how to construct RMM schema so that the end product will offer “better” navigation. It is also possible, though unproven, that the very act of using RMM schema as part of constructing an (HTML, no processing , no event) application may lead to greater coherence or lower cognitive overhead.

Our classification scheme points some clear areas where RMM can be extended. Thus, RMM can be extended to support (XML, no processing, no event) applications. In that case, it would be nice to get measures from (the extended) RMM schemas for the XML specific metrics of cohesion and coupling.

4.2 World Wide Web Design Technique (W3DT)

W3DT (Bichler and Nusser 1996) is used to create applications that display HTML pages as well as applications that create new HTML pages dynamically. As such, it provides modeling support for (HTML, no processing, no event) and some support for (HTML, server, only I & I events) applications where the only processing is to dynamically generate HTML pages. Primitives in W3DT are based on HTML. A site in W3DT is the entire application. A diagram is a sub site that is implemented at a particular location. A diagram consists of several pages. Each page has an optional layout, and optional links. The links can be static or dynamic (meaning the page is dynamically generated). A page consists of sub pages, which could be a form, an index (a list of links where each page represents similar information) or a menu (a navigational aid to pages that represent different information).

Offered as part of the application development environment, W3DT Web Designer is a tool that generates automatic prototypes, based on W3DT schema.

We next explore the extent to which W3DT provides support for the metrics we have listed for (HTML, no processing, no events) applications.

Coherence: There is no formal support for measuring the local or global coherence of an application from a W3DT schema.

Cognitive Overhead: There is no formal support for measuring cognitive overhead of an application using the W3DT schema for the application.

Download Time: There is no formal support for determining download time of pages in W3DT schema.

As with RMM, heuristic guidelines for constructing “good” W3DT schema are provided by means of an example application in (Bichler and Nusser 1996). W3DT can also be extended to provide support for (XML, no processing, no events) applications. Again preferably it will provide support for measuring the cohesion and coupling of this class of applications.

5. CONCLUSION AND FUTURE RESEARCH

We presented a three-dimensional space for the classification of WWW applications. To the best of our knowledge, models of WWW applications have concentrated on modeling applications that exist only along one dimension: the structure of pages dimension. The only methodologies we could find for modeling applications that exist across the entire 3-d space are heuristic listings of do’s and don’ts. Our aim in constructing this 3-d space is to give insight into the opportunities for creating new models of WWW applications.

We also created a list of usability metrics for values along the structure of pages dimension. We next used the 3-d space and the usability metrics to analyze the RMM and W3DT models that have been proposed to model (HTML, no processing, no event) WWW applications.

Our work here is part of a larger project that aims at providing a comprehensive list of metrics for all 3 dimensions in the classification space. In addition, we also plan to define a model that can be used to model WWW applications across this 3-d space, and whose schemas will allow measures for the metrics along all 3 dimensions of the classification space.

References

Arnold, K., and Gosling, J. (1996). The Java Programming language, Addison Wesley Pub. Co.

Berners-Lee, T., Caillau, R., Luotonen, A., Nielsen, H., and Secret, A. (1994). “The World-Wide Web.” Communications of the ACM, 37(8), 76-82.

Bhargava, H. K., and Krishnan, R. (Forthcoming). “The World Wide web: Opportunities for OR/MS.” INFORMS Journal On Computing.

Bichler, M., and Nusser, S. “Modular design of Complex web Applications with W3DT.” Fifth Workshop on Enabling technologies: Infrastructure for Collaborative Enterprises: WET ICE, Stanford, CA, USA, 328-333.

Botafogo, R. A., Rivlin, E., and Shneiderman, B. (1992). “Structural Analysis of Hypertexts: Identifying Hierarchies and Useful Metrics.” ACM Transactions on Information Systems, 10(2), 142-180.

Conklin, J. (1987). “Hypertext: An Introduction and Survey.” IEEE Computer, 20(9), 17-40.

Garzotto, F., Mainetti, L., and Paolini, P. (1995). “Hypermedia Design, Analysis and Evaluation Issues.” Communications of the ACM, 38(8), 74-86.

Isakowitz, T., Stohr, E. A., and Balasubramanian, P. (1995). “RMM: A Methodology for Structured Hypermedia design.” Communications of the ACM, 38(8), 34-44.

Khare, R., and Rifkin, A. (1997). “XML: A door to automated web applications.” IEEE Internet Computing, 1(4), 78-87.

net.genesis, and Hall, D. (1995). Build a Web Site, Prima Publishing, Rocklin, California.

Nielsen, J. (1993). Usability Engineering, Academic Press.

Preece, J. (1994). Human-Computer Interaction, Addison-Wesley, Reading, Mass.

Thuring, M., Hannemann, J., and Hake, J. M. (1995). “Hypermedia and Cognition: Designing for Comprehension.” Communications of the ACM, 38(8), 57-66.

� We ignore browser specific technologies like cookies on Netscape browsers that allow for maintenance of state between pages.

� Examples include sound and image contained in a document.

� Examples include protocol specific data such as GET requests from the client to the server, as well as alphanumeric data that is specific to the application.

� In this work, we reference a large number of current technologies. Rather than referencing each one, we urge the reader to reference one of several excellent books on technologies of the WWW.

� The display of XML documents is controlled by an accompanying XSL (extensible style sheet) which allows the same content to be displayed differently.

� Many applications work around this by using proprietary technologies like cookies.

� This can happen even if the page was dynamically generated in the CGI application by the server, once it is available in the client cache.

� As an example of using client side processing to maintain state, consider an application that requires a complicated series of inputs from the user, where each input is dependent on the previous ones. A Java applet can take the user through these interrelated activities, and obtain the required input. Once these interrelated (input) events are done, it can then contact the WWW server with the sequence of inputs to perform a server side event.

� This, of course, is similar to notions of quality in relational database systems.

� We do not consider exogenous factors like the network traffic at the time of download and the number of requests to the WWW server.

� We did not describe the physical diagram in our brief description of RMM.

12

_951029401.ppt

Degree of

Structure of

Pages

Location of Processing

Degree of Support for

Interrelated Events

HTML

XML

Complete

Flexibility

No Processing

Server

Client

Client and Server

No Events

Only I & I events

Sequences of

interrelated events

 interspersed with

sets of I & I

events

_951035237.ppt

Degree of

Structure of

Pages

Location of Processing

Degree of Support for

Interrelated Events

HTML

XML

Complete

Flexibility

Coherence

Cognitive Overhead

Cohesion

Coupling

Usability of

non-hypertext

interface

Anticipated

Download Times

