
CMU-WEB: A Conceptual Model With Metrics For Testing And Designing Usability In Web Applications

Akhilesh Bajaj

Ramayya Krishnan

The H John Heinz III School Of Public Policy and Management

Carnegie Mellon University
ABSTRACT
With the ubiquitous availability of browsers and internet access, the last few years have seen a tremendous growth in the number of applications being developed on the world wide web (WWW). Models for analyzing and designing these applications are only just beginning to emerge. In this work, we propose a 3-dimensional classification space for WWW applications, consisting of a degree of structure of pages dimension, a degree of support for interrelated events dimension and a location of processing dimension. Next, we propose usability design metrics for WWW applications along the structure of pages dimension. To measure these, we propose CMU-WEB: a conceptual model that can be used to design WWW applications, such that its schemas provide values for the design metrics. This work represents the first effort, to the best of our knowledge, to provide a conceptual model that measures quantifiable metrics that can be used for the design of more usable web applications, and that can also be used to compare the usability of existing web applications, without empirical testing.

CMU-WEB: A Conceptual Model For Designing Usable Web Applications
1. INTRODUCTION

Over the last five years, there has been a tremendous growth of applications being developed to run over the world wide web (WWW) (Berners-Lee, Caillau, Luotonen, Nielsen, & Secret, 1994). Several technologies are in vogue for writing these applications (Bhargava & Krishnan, 1998). Depending on the kind of technology used, different classes of applications can be created using the WWW as the medium of transport.

Given the large number of systems analysis and design methods available, there is some confusion as to which methods are suitable for WWW applications. This work makes two contributions. First, we present a three dimensional classification space for WWW applications. The dimensions used are the location of processing, the degree of support for interrelated events, and the structure of pages. The classification scheme we use provides insight into which existing modeling methodologies are useful for designing a WWW application along each dimension. We find that adequate models exist for the location of processing and the interrelated events dimension. However, while several modeling methods (e.g., (Bichler & Nusser, 1996; Isakowitz, Stohr, & Balasubramanian, 1995)) have been recently proposed for the documentation and maintenance of WWW applications, there is a need for a conceptual model that can facilitate the design of WWW applications along the degree of structure of pages dimension, such that the applications are more usable. We propose design criteria that relate to usability, and hold along the structure of pages dimension, in the form of high level requirements. These requirements represent questions that should be answered by a conceptual model that seeks to facilitate the design of WWW applications so that they are more usable.

The second contribution of this work is a model that solves the above need to be able to quantitatively evaluate the high level requirements. We propose CMU-WEB (Conceptual Model for Usable Web Applications), a conceptual model of WWW applications that facilitates the design of more useable WWW applications, by providing a schema which provides values for metrics that measure the high level requiements along the structure of pages dimension.

The rest of this paper is organized as follows. In section 2, we present a 3-dimensional classification space for WWW applications. In section 3, we propose a list of high level usability metrics, along one dimension of the space. In Section 4, we define CMU-WEB, and show how usability metric values can be derived from CMU-WEB schema. In section 5, we discuss how CMU–WEB can b eusedto design new web applications, and how it fits in with commonly used heuristic techniques for web application design. Finally, we give directions for future research and the conclusion in section 6.

2. A CLASSIFICATION SPACE FOR WWW APPLICATIONS

In this work, we define a WWW application as one that runs using the hypertext transfer protocol (HTTP) as the transfer protocol. In our view, this is what differentiates WWW applications from other networked applications. We define an application as consisting of a series of zero or more events. We define an event as a subset of an application that consists of at least one user input, followed by some processing.

Networked applications in general differ along several dimensions, such as the degree of state maintained on the server, the class of user, the type of user interface and the programming language used. Before identifying dimensions for classifying WWW applications (which are a subset of all networked applications) we identify certain features that are shared by all WWW applications:

· All WWW applications are inherently client/server. The WWW client is a web browser, which communicates with a WWW server using HTTP
.

· The HTTP protocol is inherently stateless
, which means that the server does not maintain the state of the client’s application. However, several recent WWW applications involve the downloading of a client (e.g., a chat client) that then establishes a stateful link with its corresponding server (e.g., a chat server).

· The bulk of processing is usually done on the server side, although this is not necessary any more.

· The direction of data is two-way. Multimedia data
 flows from the WWW server(s) to the client, while alphanumeric data
 flows from the WWW browser to the WWW server.

· A large percentage of WWW applications are accessed by heterogeneous, naïve users.

These features are common to all WWW applications. They are also what makes WWW applications different from networked applications running on some other protocol, such as CORBA
 (Common Object Request Brokered Architecture) or RPC (Remote Procedure Call).

Next we propose three dimensions along which WWW applications differ: the degree of structure of the WWW pages in the application, the location of processing and finally, the degree of support for interrelated events within an application. WWW applications can be classified along several different dimensions, such as the technology used in building the application, whether the application is transactional or not, or whether the groups accessing the application are naïve or expert. The three dimensions that we propose here serve the purpose of providing insight into the role of different design methodologies that are appropriate for constructing a WWW application.

2.1. Degree Of Structure Of The WWW Pages

This dimension looks at the degree of structure of the pages that make up a WWW application. Values along this dimension include pages following the Hyper Text Markup Language (HTML), pages following the Extensible Markup Language (XML) (Khare & Rifkin, 1997) and pages with completely flexible content, determined by the application. We now explain each of these values.

Most WWW pages today are in HTML format. An HTML page presents a hypertext interface to the user. HTML tags do not convey any meaning as to the structure of the contents of the page. WWW clients simply interpret the tags as display instructions.

The second value along this dimension is XML format. XML is an emerging standard for client browsers, and is a subset of the Standard Generalized Markup Language (SGML). XML allows the definition of the structure of the page using tags that the creator of the document can define at will. It is hoped that using tags for purposes other than merely display
, as in HTML, will solve many of the problems that plague HTML pages. E.g., A group of organizations could agree on a set of tags that convey the same content. This will facilitate the development of applications that share information across these organizations, by greatly reducing the amount of procedural code that would need to be written to create structure from a flat HTML format.

The third value along this dimension is complete flexibility of user interface. This is now possible by using Java applets that allow a browser to download a document that contains information that allows the execution of a Java applet (Arnold & Gosling, 1996). The applet is stored on the WWW server in bytecode format, and executed on the client machine. The applet can be used to create interfaces that are completely flexible. E.g., Different chatroom applets on the WWW present different interfaces to users. Complete flexibility allows pages to be structured, and presented in any way desired.

Next, we discuss the second dimension: the location of processing.

2.2 The Location Of Processing Of The WWW Application

This dimension looks at whether the processing (if any) takes place on the server side, or on the client and server side. Hence we have four values for this dimension: no processing, processing only on the server, processing only on the client and processing on the client and server. We now explain each of these values.

A large percentage of WWW pages are used for information display only. A WWW application with no processing would consist of a list of linked WWW pages. Note that processing would still be necessary for following the HTTP protocol on both client and server side. However, there is no processing of content.

Processing only on the server arises because of the Common Gateway Interface (CGI) (net.genesis & Hall, 1995). The interface, allows a browser to download a WWW page, and then to submit alphanumeric data to a WWW server. The WWW server receives the data and passes it to a CGI script. The data is passed using environment variables on UNIX systems, and temporary files on Windows-NT systems. The processing program, which can be in any programming language, reads this data and processes it. The results are passed back to the client, either directly by the program or via the WWW server. The result is usually another page, perhaps generated dynamically. Note that no processing takes place on the client side here. WWW applications using HTML forms that require user input use CGI.

Processing only on the client involves client-side scripting or Java applets or Active X controls. In client side scripting, the page includes programs in an interpreted language such as Javascript or Vbscript. E.g., the function is coded in the HEAD of an HTML page, and then accessed in the BODY of the page. There are a few problems with using client side scripting for large amounts of processing (Bhargava & Krishnan, 1998). First, the script is interpreted, and is slower than compiled programs that usually run on the server side. Second, the source code is available to the client, which may be undesirable. Third, increase in size of client side scripts causes slower downloads. In general, light processing like error checking input is performed using client side scripting.

Active X controls or Java applets also allow client side processing. The downloading and execution of an applet in the browser allows a larger amount of processing to be handled by the client than is the case with client-side scripting. Note that if Java applets are used, it is possible to bypass HTTP, and to establish a persistent state network connection using Java’s extensive networking support. Typically, Java applets and Active X controls are used to create user-interfaces. However, they can also be used to perform more processing on the client side.

Processing on both the client and server means that the processing of events in the application is divided between the client and the server. This involves the use of CGI (for processing on the server) and of client-side scripting or Java applets or Active X controls (for processing on the client).

Next, we discuss the third dimension: the degree of support for interrelated events within an application.

2.3 The Degree Of Support For Interrelated Events

This dimension measures the degree to which the events within the WWW application can be interrelated to each other. We propose 4 values along this dimension: no events, only independent and idempotent (I&I) events, sets of I&I events interspersed with interrelated events and sequences of interrelated events. We now explain each value.

No events occur in applications with an absence of processing of any content. This would happen in an application that simply displayed pages, and allowed for hypertext navigation between pages. This is also called a kiosk application (Troyer & Leune, 1998).

Events processed on WWW servers are I&I events because of the stateless nature of HTTP, i.e., the server can not keep track of events in the application
. E.g., if a CGI application requires the client to supply a series of forms that are written to server files, then each time the “submit” button is pressed on the client, an application event is generated on the server. Since HTTP is stateless, each “submit” event from the client is treated without knowledge of any previous submits. There is no way to keep track of the state of how many write-events have been done by a client, or whether a client decided to repeat some write-events by resending some forms of the application
.

In a well-designed WWW application of this type, the events that are generated on the WWW server should be idempotent (each event in an application instance can be run multiple times without changing the outcome of the application instance). Also, server events should belong to event sets, i.e., there should be no interdependence between the different events in the application, represented by different pages. This is needed because it is impossible to keep track of the state of the application instance between events. therefore, in an application of this type, the only solution is to clump all inter-dependent input from users in an application on one page, as one event.

Sets of I&I events interspersed with sequences of interrelated events arise in the case of processing on the client and server side, where the client is a browser, and the server is the WWW server. Note that the client can maintain state of the application. Thus, in a WWW application of this type, interrelated events are processed on the client side, and I&I events are processed on the server side
. This kind of application will consist of a sequence of interrelated events (on the client), followed by a set of server (I & I) events, followed by another sequence of client events, etc. An example of this would be performing error checking on an HTML form for correct format masks, permissible value ranges, etc by a client side script and then sending the form to the server. The checking at the client side leads to a sequence of interrelated events, written as a client side script. The submission of the form to the server leads to an I & I event.

Sequences of interrelated events arise in the case of processing on the client and server side, where a special client (e.g., a chat client) can be downloaded on a WWW browser, and can establish a stateful link with its corresponding (chat) server. Once a stateful link is established, the application becomes a sequence of fully interrelated events, since both the (chat) client and the (chat) server can keep track of the state of the (chat) application. WWW applications that employ state maintenance technologies like cookies can also contain sequences of interrelated events.

Our three dimensional space for classifying WWW applications is shown in figure 1. An application is classified by a triple that represents values along the three axes. E.g., a WWW application using a HTML pages, with Javascript and CGI sharing the processing would be (HTML, Client and Server, Sequences of interrelated events interspersed with I & I events). A WWW application that displayed HTML pages would be (HTML, no processing, no events). A WWW chat room application that involved downloading a Java applet chat client that connected to a chat server would be (complete flexibility, client and server, sequence of interrelated events).

[image: image2.wmf]Degree of

Structure of

Pages

Location of Processing

Degree of Support for

Interrelated Events

HTML

XML

Complete

Flexibility

No Processing

Server

Client

Client and Server

No Events

Only I & I events

Sequences of

interrelated events

 interspersed with sets

of I & I events

Sequence of

Interrelated Events

Figure 1. 3-d Space for Classifying WWW Applications

2.4 Insights from the Classification Scheme

The classification scheme provides insight into what models should be used in the analysis and design phase of a WWW application. First, for the degree of support for interrelated events dimension, no model that depicts events is needed for the no events value. In case of the other three values on the dimension, well known systems analysis and design techniques such as Object Oriented Analysis and Design (OOAD) (Booch, 1994) can be used. Techniques like OOAD are very suitable for applications which are a sequence of interrelated events. They do not however, to the best of our knowledge, allow the modeling of the idempotency of each event or a series of events. This is an area for future research. Apart from this, OOAD or other methodologies can be used to design applications along all values of the degree of support for interrelated events dimension, except for applications with no events. There is a large body of literature on using well known systems analysis and design models with some metric based feedback to assess the quality of a good design (e.g., (Booch, 1994; Bulman, 1991; Jefferey & Stathis, 1996; Martin & Odell, 1992)). Examples of well known metrics for this dimension include lines of code, the function point metric and high level requirements include the sufficiency, primitiveness and completeness of methods and the coupling and cohesion of classes in OOAD.

Second, for the location of processing dimension, no models that allow the analysis of sharing of processing are needed for no processing
. Also, no models are needed for WWW applications where all the processing is done on one machine (only on the WWW client or only on the server). There is a substantial body of literature on designing client/server applications, where processing is distributed between the client and the server (e.g., (Boar, 1992; Deshpande, Jenkins, & Taylor, 1996; Drakopoulos, 1995; Major, 1996)). The design methodologies in this literature also provide some metric based feedback on what a good design is. Many of these design methodologies involve creating discrete event simulation models of the client server interaction (Deshpande et al., 1996) or analytical queuing models (Drakopoulos, 1995). Examples of well known metrics along this dimension include CPU utilization of client and server, disk input / output (I/O) utilization of client and server, average wait time for client requests at server and average run queue length at the server.

Third, for the structure of pages dimension, several models have recently been proposed on how to document HTML applications (e.g., (Bichler & Nusser, 1996; Isakowitz et al., 1995; Schwabe, Rossi, & Barbosa, 1996)). To the best of our knowledge, most models that have been proposed to model WWW applications actually model only (HTML, no processing, no events) WWW applications. As we point out in (Bajaj & Krishnan, 1998) these existing models do not provide any metric based feedback on how good the design of the application is; instead, they focus on documenting the application and facilitating easier maintenance. Several metrics have been identified for hypertext applications (Botafogo, Rivlin, & Shneiderman, 1992) as well as for user-interfaces in general (Nielsen, 1993; Preece, 1994; Shneiderman, 1998). Next, we draw from this previous work and identify a set of high level metrics that should be supported by a conceptual model that provides metric based feedback on how good a WWW application is along the structure of pages dimension.

3. USABILITY REQUIREMENTS ALONG THE STRUCTURE OF PAGES DIMENSION

Several high level requirements have been proposed for hypermedia documents (see (Garzotto, Mainetti, & Paolini, 1995) for an extensive listing). We present what we view as a canonical set of four quality-equirements, i.e., the set covers most of the abstractions covered in quality requirements proposed by others, and each requirement in the set is reasonably non-overlapping with the other. The high level requirements we present in this section represent design questions that should be answered by a conceptual model that aims to facilitate the usability design of a WWW application. In section 4, we present CMU-WEB, a conceptual model that answers these questions.

The first two quality requirements attempt to measure the readability of the HTML and XML documents in the application. Two factors influence readability: coherence as a positive influence (Thuring, Hannemann, & Hake, 1995) and cognitive overhead (Conklin, 1987) as a negative influence.

3.1 Coherence

This requirement is used to represent the ease with which readers can form mental models of a possible world, from the hypertext document. Local coherence is the degree to which each specific document conveys a mental model. E.g., A document that uses conjunctions, paragraphs and other writing techniques, with appropriate multimedia illustrations provides higher local coherence than one that simply contains free flowing text. Global coherence deals with the “lost in hyperspace” problem and is the degree to which the reader can form a macro structure across documents. E.g., An application that maintains a preservation of context across nodes (perhaps by using HTML frames) is likely to be more globally coherent than one whose documents are disjoint fragments of context, with no cues in each document as to the pre-context or the post-context. An important determinant of global coherence is the difficulty of navigation. E.g., an application that does not permit backward navigation, or that has arbitrary jumps from each page is less easy to navigate than one that supports navigation in both directions, and that has a smaller number of jumps, with less “cognitive distance” per jump.

3.2 Cognitive Overhead

The reason for this requirement comes from the limited capacity of human information processing. In hypermedia applications, cognitive overhead is determined primarily by user-interface adjustment (Thuring et al., 1995) and low consistency (Garzotto et al., 1995). E.g., An application that presents too many or changing fonts, colors and layouts on each page requires more user interface adjustment than one that presents a uniform appearance between pages with fewer fonts and colors and the same layout. An application that depicts say, sound multimedia objects differently in different pages is less consistent, and would impose greater cognitive overhead on the reader.

The previous requirements related to HTML and XML values along the dimension, since they are based on the fact that the interface for these structures is hypertext.

The next two requirements relate to the actual information presented on the pages of a WWW application.

3.3 Cohesion Of Information In A Document

This requirement represents the need that information in a single page is cohesive in the real-world it represents. E.g., if the page contains information on customers alone, then it is more cohesive, and hence better, than a page that contains information on customers as well as sales.

3.4 Coupling Of Information Across Documents

This requirement represents the need that information in a page should be independent of information in other pages in the application. E.g., if the customer name and address are duplicated across pages in the application, the coupling will be more, and hence the application will be of lower quality, than if only a key field like the customer number is duplicated across documents
.

The following high level requirement pertains only to the complete flexibility value on the dimension. It measures the usability of a non-hypertext interface.

3.5 Usability Of Non-hypertext Interfaces

There is a great deal of work on the usability of human interfaces (e.g., (Nielsen, 1993; Preece, 1994)). We define the following factors as influencing the usability of user interfaces. These factors are borrowed from (Nielsen, 1993), and represent a synthesis of over 90 published studies in the area of user interface design. The learnability of the interface is the perceived ease of use of the application by novice users. Efficiency of use is the steady-state performance, once the learning curve flattens out. Memorability of the interface is the amount of time that elapses before users slip back on the learning curve.

The sixth high level requirement comes from the fact that all applications run on a network, and that network delays, slow servers, etc. can lead to long download times. It is hence applicable to all values along the dimension.

3.6. Anticipated Download Times

This requirement represents the time it will take to download pages from the WWW server. It is determined by endogenous factors like the server capacity, the size of the objects that would appear on each page of the application, and the number of different HTTP requests that need to be sent to create each page of the application. It is also determined by exogenous factors like the network traffic at the time of download and the number of requests to the WWW server. Applications on servers with greater processing and disk input/output capacities, with smaller size objects on each page and requiring fewer HTTP requests per page are likely to have less download times.

The high level requirements are summarized in figure 2. Note that the requirements we have proposed here stem from our classification scheme, and are for WWW applications, not for models of WWW applications. These requirements represent information that should be derivable from schemas of models that are used to design WWW applications along the structure of pages dimension.

Next, we propose CMU-WEB: a conceptual model for usable web applications that seeks to facilitate the design of WWW applications, by providing metrics that evaluate the fulfillment of requirements identified in this section.

[image: image1.wmf]Degree of

Structure of

Pages

Location of Processing

Degree of Support for

Interrelated Events

HTML

XML

Complete

Flexibility

Coherence

Cognitive Overhead

Cohesion

Coupling

Usability of

non-hypertext

interface

Anticipated

Download Times

Figure 2. Usability Requirements for values along the Degree of Structure of Pages Dimension

4. CMU-WEB: CONCEPTUAL MODEL FOR USABLE WEB APPLICATIONS

4.1 Components and Semantic Rules of CMU-WEB
We define a CMU-WEB schema as a graph with nodes and arcs. The node types are:

1. Canvas View: A canvas view (CV) is a full page in a WWW application, with at least one information chunk (defined below). Examples of canvas views are: HTML pages, XML pages, Java forms and subsets of HTML pages if they are anchored (pointed to by a link). A WWW application is structured as a network of canvas views, with hyper links between them.

2. Information Chunk: An information chunk (IC) is a clearly discernible discrete unit of information that is represented in the application. Examples of ICs include: a textual paragraph describing an idea, an attribute (say, customer name) of a real world entity (say, customer), a .gif file; a .jpeg file and textual information about a real world entity. Only text based information can be split into smaller ICs. A photograph, a movie or a piece of sound are considered to be single ICs. The problem of splitting these multimedia files into smaller ICs is for future research.

3. Information Chunk Depiction: An information chunk depiction (ICD) is the method of depicting the IC in the application. The same IC may have several different depictions. E.g., A map to a location (.gif) and verbal directions to the location (text).

4. Hyperlink Within Application: A hyperlink to within application (HLWA) is a hyperlink from one CV to another CV in the application. HLWAs can be one-way (HLWA1) or two-way (HLWA2: the CV that is pointed to, also points back to the original CV). HLWA2s are implemented as two separate links in a WWW application.

5. Hyperlink Outside Application: A hyperlink outside application (HLOA) is a hyper link to a CV of another application.

The arc types are:

1. Relationship Between Information Chunks: A relationship between information chunks (RIC) is any semantic relationship between two ICs, that is deemed important for the potential users of the application. Examples of RICs include both_work_for_MISt as an RIC between information_on_bob and info_on_mary , and both_introduce_company as an RIC between a text paragraph describing the company and a photograph of the company location. We note that RICs differ from hyperlinks, in that they are conceptual and between ICs, while hyperlinks are actual and used for navigation between CVs.

2. IC-ICD : This arc type simply connects the ICD with the relevant IC.

3. Contained-in: This arc type connects an IC, an HLWA1, an HLWA2 or an HLOA with each CV that it appears in.

Informal rules for a CMU-WEB schema:

A WWW application is one that consists of at least one Canvas View, and at least one Information Chunk
. A CMU-WEB schema shows the RICs between all information chunks, as well as the canvas view locations of all information chunks, HLWA1, HLWA2, HLOA. The graphic representation of components in CMU-WEB is shown in figure 3. The possible <arc, from-node, to-node> combinations in a schema are shown in figure 4.
[image: image3.wmf]Canvas View

Information Chunk

Information Chunk Depiction

Relationship between

Information Chunks

HLWA1

HLWA2

HLOA

IC-ICD

CV name

CV name

IC-ICD

Contained-in

Contained_in

URL

IC name

Type

CV name

Figure 3. Graphical Representation of the Components of CMU-WEB

[image: image4.wmf]co.html Canvas

Introduction

Text_content

Management Team

Text_content

Problems Solved

Text_content

Products

Text_content

Competitive

Advantage

Text_content

Services

Text_content

Summary

Text_content

Management Team

Text

Problems Solved

Text

Products

Text

Competitive

Advantage

Text

Services

Text

Summary

Text

co.html#management Team

co.html#Problems Solved

co.html#Products

co.html#Advantages

co.html#Services

co.html#Summary

IS_Arch_diagram

.

gif

Figure 4. Possible <arc, from-node, to-node> combinations in a CMU-WEB schema
Several other models use one or more of the concepts in CMU-WEB. For example, a widely accepted model of hypertext is a graph of nodes and links. The nodes there are the same as CVs here, and the links are the same as HLWA1s. Most models for developing WWW applications use the concept of a page, which corresponds to a CV here. The IC, ICD and RIC concepts in CMU-WEB are different from other models, but most models use some sort of primitive for capturing the information on a page. E.g., RMM (Isakowitz et al., 1995) uses a slice as that portion of a real world entity that appears on a page. The main difference between an IC and a slice is that an IC is not restricted to belonging to some entity, and there is no need in CMU-WEB to aggregate all the chunks of information into entities, before slicing them into pages. This allows the depiction of information like abstract ideas, which may not be easily aggregated into entities. It also eliminates the creation of multiple models, and reduces the time taken to arrive at a schema. CMU-WEB is similar to the simple entity relationship model (Chen, 1976) which consisted of very few components, and where the identification of entities and relationships allows for great flexibility. When creating a CMU-WEB schema, the identification of what a relevant IC is, and what the relevant RICs are, is highly application specific and dependent on the designer of the application.

Another point of structural difference between CMU-WEB and most other current models for WWW applications is the number of components. Most other models contain significantly more components than CMU-WEB, and have significantly more semantic rules for consistency. This makes them more likely to be hard to use than CMU-WEB for modeling real-world applications (Castellini, 1998). For example, RMM has eleven components and several rules for consistency. CMU-WEB has six components (IC, RIC, CV, HLWA1, HLWA2, HLOA) that require cognitive effort to model.

Figures 5, 6 and 7 show a portion of a CMU-WEB schema that we created for an existing web application. These figures are meant to indicate what a CMU-WEB schema looks like. For convenience, the contained-in arc is assumed. Thus, all the elements in figure 5 are contained in the CV shown in figure 5, etc. Since there are no RICs between ICs contained in different CVs, we can do this here for convenience. In general, the contained-in arc should be shown, if RICs exist across CVs.

[image: image5.wmf]index.html Canvas

Corporate Overview

text

Our Products

text

Professional Services

text

Data Warehousing

text

Employment

Opportunities

text

op.html

Co. Message

text

co.html

ps

.html

dw

.html

eo

.html

Contact Us

button

Co. Logo

.

gif

Corporate Overview

button

Our Products

button

Professional Services

button

Data Warehousing

button

Employment

Opportunities

button

co.html

ps

.html

dw

.html

eo

.html

op.html

cu.html

What’s New

button

wn

.html

Home

button

index.html

Contact Us

text

cu.html

What’s New

text

wn

.html

Home

text

index.html

Figure 5. One CV from a CMU-WEB schema created for an existing WWW application

[image: image6.wmf]co.html Canvas

Introduction

Text_content

Management Team

Text_content

Problems Solved

Text_content

Products

Text_content

Competitive

Advantage

Text_content

Services

Text_content

Summary

Text_content

Products

Solve Problems

IS_Arch_diagram

.

gif

Architecture

contained in products

description

Leads to

Services Solve

Problems

Figure 6. One CV from a CMU-WEB schema created for an existing WWW application

[image: image7.wmf]CV name

IC-ICD

Contained_in

Contained_in

Contained_in

Contained_in

CV name

URL

CV name

IC name

IC name

type

Figure 7. One CV from a CMU-WEB schema created for an existing WWW application

Next, we show how CMU-WEB can be used to derive values for the high level metrics, identified in section 3, that indicate the usability of WWW applications.

4.2 Deriving Values for Usability Metrics From A CMU-WEB schema
4.2.1 Coherence

Local coherence deals with each CV. The local coherence per CV is increased if there are more RICs between the ICs on the CV. We measure this by the local coherence due to RIC (LCRIC) metric:

LCRIC

=
 (RIC

where the summation is over all the

 (IC

RICs and ICs on the CV
We can use the mean LCRIC, across all CVs in the application, as well as the standard deviation to measure the LCRIC in the application, as a whole. The range of LCRIC is 0 to infinity. A higher LCRIC indicates more local coherence. The mean LCRIC and its standard deviation (std. dev.) can be used to compare applications differing in number of CVs and HLWAs.

In addition to LCRIC, local coherence is also dependent on the well known principle that the capacity of the human short term memory is 7 (2 information chunks. Thus, a CV with more than 9 ICs will have less local coherence, while one with less than 5 ICs is being inefficient. We define a second metric for local coherence called the local coherence due to short term memory (LCSTM).

LCSTM

=
(IC
where the summation is the number of ICs across the page.

This metric ranges from 1 to infinity, but the optimum values are between 5 and 9. We can also get the mean LCSTM across and the standard deviation, to measure the LCSTM in the application as a whole. The mean LCSTM and its standard deviation are comparable across applications of differing sizes.

Global coherence deals with the “lost in hyperspace” problem. Global coherence is higher if the number of HLWAs per CV is higher. We define a metric called global coherence due to HLWA (GCHLWA).

GCHLWA

 =
 (HLWA1 + 2*(HLWA2
where the summation

 (CV

is across the application.

GCHLWA ranges from zero to infinity. The higher the value, the more the global coherence. The metric is comparable across applications of differing sizes.

A second component of global coherence is the difficulty of navigation. (Botafogo et al., 1992) propose several low level metrics that deal with the structure of hypertext documents and permit easier navigation. Since they model a hypertext as a network of nodes and links, we simply note here that their metrics can be easily derived from a CMU-WEB schema, since a node (CV and a link (HLWA1.

We provide a guideline here based on the fact that a hierarchical structure is widely known to be easier to navigate than a network, as long as the number of levels is less than 4 (Vora, 1997). Given that the short term memory capacity of humans is between 5 and 9 information chunks, this translates to a guideline that applications having less than 9*9*9 = 729 CVs (other than pure menu based CVs) should use a hierarchical tree structure. Applications with more than 729 CVs should provide a search engine (Botafogo et al., 1992) or some sort of logical ordering of CVs.

A third component of global coherence is the cognitive jump between two CVs that are hyperlinked. Thus in each direction, an HLWA has a cognitive jump associated with it. This is dependent on the number of RICs between the source and the target CV, and also on the number of ICs in the source CV that are involved in these RICs. If there are more RICs between the source and target CVs, the cognitive jump is lower. However, the jump is higher the more the number of ICs in the source CV that are involved in these RICs. Thus, an ideal case would be where there are a large number of RICs between the two CVs, but only one IC is involved in these RICs, on the source CV. We also note that the number of ICs involved at the source can at most equal the number of RICs between the 2 CVs.

To measure this, we define a metric called global coherence due to cognitive jumps (GCCJ), for each HLWA, along each direction.

GCCJ

=
 2

if the number of RICs between the source and target CV is 0

=
 (IC

where the summation is for each link,

 (RIC

In the GCCJ metric, IC represents the number of ICs in the source CV that are involved in the RICs, and RIC is the number of RICs between the 2 CVs. The range of GCCJ is between 0 and 2. The lower the value, the lower the cognitive jump. We can also compute the mean GCCJ across each direction of all HLWAs in the application, as well as the standard deviation. The mean GCCJ and its standard deviation are comparable across applications of differing sizes.

4.2.2 Cognitive Overhead:

Cognitive overhead consists of user interface adjustment and consistency of the application. User interface adjustment is best determined through empirical testing, since it is highly dependent on the kinds of colors, fonts, layouts used.

To measure the consistency of the application, we propose a metric called the cognitive overhead due to consistency (COC).

COC

=
 (ICD
 where the summation is across the different types

 (Media

of media.
Thus, if the application uses 3 types of media (e.g., text, sound, video) and uses two different formats for sound, and one each for video and text, then the value of COC is 4/3 = 1.33. The range of the COC metric is 1 to infinity, and the higher the value, the more is the cognitive overhead due to consistency. The COC metric is comparable across applications of differing sizes.

4.2.3 Cohesion

Cohesion looks at how interconnected the information on each CV is. To measure this, we define an IC cluster as the ICs on a CV that are reachable from each other, using the RICs as links. Each CV has a minimum of one IC cluster, and a maximum of infinite IC clusters. We define a metric called cohesion (COH) to measure cohesion

COH

=
1 / (IC clusters

where the summation is across a CV

The range for COH for each CV is 0 to 1. The higher the value, the more cohesive is the CV. We can compute the mean COH across all the CVs, as well as the standard deviation. The mean COH and its standard deviation are comparable across applications of different sizes.

4.2.4 Coupling

This is the degree of commonality of information across CVs. We define a repetition count of an IC as the number of occurrences of the IC in different CVs – 1. We define a metric called Coupling (COU) to measure coupling.

COU

=

 (repetition count

where the summation is

 (IC

across ICs
The COU metric ranges in value from 0 to infinity. A higher value indicates a higher coupling, which is less desirable. The COU metric is comparable across applications of different sizes.

4.2.5 Download Time

This metric is dependent on several endogenous variables not captured in CMU-WEB, as well as several exogenous variables listed in section 3, and is thus not measurable from a CMU-WEB schema.

4.2.6 Usability of Completely Flexible Interfaces

The usability metrics for completely flexible interfaces are best tested empirically, since, to the best of our knowledge, so far there is no way to create a conceptual model that can model completely flexible interfaces.

Table 1 summarizes the seven metrics proposed in this work.

	Metric Name
	Metric Range
	Comparable Across Applications of Different Sizes?

	LCRIC
	0 to infinity
	Mean and std. dev.

	LCSTM
	1 to infinity
	Mean and std. dev.

	GCHLWA
	0 to infinity
	Yes

	GCCJ
	0 to 2
	Mean and std. dev.

	COC
	1 to infinity
	Yes

	COH
	0 to 1
	Mean and std. dev.

	COU
	0 to infinity
	Yes

Table 1. Summary information on the usability metrics derivable from CMU-WEB schema

The metrics presented above can be used to evaluate and compare the usability of existing web applications. Next, we describe how CMU-WEB can be used to design new web applications, and how it fits in with commonly used heuristics fir web application design.

5. UTILIZING CMU-WEB TO DESIGN NEW WEB APPLICATIONS

From sections 3 and 4, it follows that a key factor in utilizing CMU-WEB is deciding what RICs between ICs are meaningful. One possible method of determining this is to follow the common design practice of dividing the application into processes that the user will follow. E.g., if the application is used to show the static pages of an organization, processes may include: get_introduced_to_organization, find_employee_in_organization and learn_about_organization_products. The processes can then be used to define RICs, so that all the ICs needed for a process are involved in an RIC. Next, we describe how such an application can be designed using the metrics in section 4.

The LCRIC metric would be increased if all the ICs that are required in a process are portrayed on the same CV. This ties into the common heuristic approach of one screen corresponding to one activity.

LCSTM would be optimized if we chunk the information on a CV in such a way that there are between 5 and 9 chunks of information. Again, this follows the heuristic of chunking information on a screen, and not using an excessive number of chunks.

The GCHLWA metric is increased if we use a frame based design, where all the processes are listed on every page, and the user can navigate to any process. Furthermore, the CVs associated with each process should be sequentially navigable. Again, we observe that heuristic design practices have evolved so that most web applications now follow this approach.

The GCCJ metric would be reduced (which is favorable) if we follow the same approach described above for GCHLWA, because the only information chunk that will be related on the source CV will be the process name, which will then be linked to all the ICs on the target CV.

The COC metric would be kept low if we used one format per media throughout the application. We note here that several real world web applications use multiple formats for media. The idea is that each user can pick the one format they like, and use that throughout the application. This is not undesirable, as long as each instance of a media is available for all the formats (i.e., consistency is maintained).

The COH metric is increased if all the ICs on a CV are connected to the same process, which is again part of the same set of design heuristics described earlier in this section.

The COU metric is increased if the processes are defined so that they are largely exclusive, which means that users would not use the same ICs across processes.

The above discussion lends validity to the CMU-WEB metrics in that common design heuristics move all the metrics in their respective favorable directions. Thus, CMU-WEB is a method of quantifying the usability of an application, and comparing it to other applications.

6. CONCLUSION AND FUTURE OPPORTUNITIES

In this work, we proposed a three dimensional classification of web applications. The classification provided insight into how the different design methodologies interact and can be used to create a WWW application. Specifically, developing a WWW application involves using design methods for each of the 3 dimensions in the classification.

While design methodologies already exist along both the location of processing and the degree of support for interrelated events dimensions, we identified a need for a conceptual model along the structure of pages dimension that facilitates design along this dimension. To fulfil this need, we first identified design questions that should be answered along this dimension, listing them as high level metrics. Next, we proposed CMU-WEB: a simple conceptual model that can be used in the analysis phase of a WWW application, as well as to reverse engineer an existing WWW application. We presented a list of seven low level metrics, whose values can be derived from CMU-WEB schema. This implies that web applications can be designed for better usability, by using CMU-WEB as the conceptual model along the structure of pages dimension. As in all analytic design methodologies, the advantage gained by using CMU-WEB for designing a proposed WWW application is reduced time for implementation, and a better (more usable) application. We can also use CMU-WEB to compare existing WWW applications for usability, without doing any empirical testing. The approach is simple: create a CMU-WEB schema for each of the WWW applications, and derive the values of the seven metrics for each application.

We have created a CMU-WEB schema for one real life application so far. Our experience with it has been that it is reasonably simple to use, since it has very few components and semantic rules for consistency. Just as the critical issue in the ER model is the identification of entities and relationships, the critical issue in using CMU-WEB seems to be the identification of ICs and RICs.

CMU-WEB represents, to the best of our knowledge, a first effort to create a conceptual model for designing the usability of WWW applications (versus merely documenting the application). Our future research aims at using CMU-WEB for measuring the usability of more existing WWW applications, at integrating CMU-WEB with other conceptual models, and at promoting the use of CMU-WEB by the academic and practitioner communities.

References

Arnold, K., & Gosling, J. (1996). The Java Programming language: Addison Wesley Pub. Co.

Bajaj, A., & Krishnan, R. (1998, June). Analyzing Models For Current World Wide Web Applications Using a Classification Space and Usability Metrics. Paper presented at the Third Workshop on the Evaluation of Modeling Methods in Systems Analysis and Design, in conjunction with CAiSE.

Berners-Lee, T., Caillau, R., Luotonen, A., Nielsen, H., & Secret, A. (1994). The World-Wide Web. Communicatiuons of the ACM, 37(8), 76-82.

Bhargava, H. K., & Krishnan, R. (1998). The World Wide Web: Opportunities for OR/MS. INFORMS Journal On Computing, 10(4), 359-383.

Bichler, M., & Nusser, S. (1996). Modular design of Complex web Applications with W3DT. Paper presented at the Fifth Workshop on Enabling technologies: Infrastructure for Collaborative Enterprises: WET ICE, Stanford, CA, USA.

Boar, B. H. (1992). Implementing Client Server Computing: McGraw Hill.

Booch, G. (1994). Object Oriented Analysis and Design with Applications. Redwood City: Benjamin/Cummings.

Botafogo, R. A., Rivlin, E., & Shneiderman, B. (1992). Structural Analysis of Hypertexts: Identifying Hierarchies and Useful Metrics. ACM Transactions on Information Systems, 10(2), 142-180.

Bulman, D. (1991). Refining Candidate Objects. Computer Language, 8(1).

Castellini, X. (1998). Evaluation of Models defined with Charts of Concepts: Application to the UML Model. Paper presented at the Third Workshop on the Evaluation of Modeling Methods in Systems Analysis and Design, in concjunction with CAiSE., Pisa, Italy.

Chen, P. P. (1976). The Entity-Relationship Model: Towards a Unified Model of Data. ACM Transactions on Database Systems, 1(1), 9-36.

Conklin, J. (1987). Hypertext: An Introduction and Survey. IEEE Computer, 20(9), 17-40.

Deshpande, Y. L., Jenkins, R., & Taylor, S. (1996). Use of Simulation to test client-server models. Paper presented at the Proceedings of the Winter Simulation Conference.

Drakopoulos, E. (1995). Design Issues in Client/Server Systems. Paper presented at the IEEE 14th Annual International Phoenix Conference on Computers and Communications.

Garzotto, F., Mainetti, L., & Paolini, P. (1995). Hypermedia Design, Analysis and Evaluation Issues. Communications of the ACM, 38(8), 74-86.

Isakowitz, T., Stohr, E. A., & Balasubramanian, P. (1995). RMM: A Methodology for Structured Hypermedia design. Communications of the ACM, 38(8), 34-44.

Jefferey, R., & Stathis, J. (1996). Function point Sizing: Structure, Validity and Applicability. Empirical Software Engineering, 1, 11-30.

Khare, R., & Rifkin, A. (1997). XML: A door to automated web applications. IEEE Internet Computing, 1(4), 78-87.

Major, J. (1996). Client/Server capacity planning and hardware resource usage metrics, trends and relationships. Capacity Management Review, 24(2), 3-9.

Martin, J., & Odell, J. (1992). Object-Oriented Analysis and Design. Englewood Cliffs, New Jersey: Prentice Hall.

net.genesis, & Hall, D. (1995). Build a Web Site. Rocklin, California: Prima Publishing.

Nielsen, J. (1993). Usability Engineering: Academic Press.

Preece, J. (1994). Human-Computer Interaction. Reading, Mass.: Addison-Wesley.

Schwabe, D., Rossi, G., & Barbosa, S. D.-J. (1996). Systematic Hypermedia Application Design with OOHDM. Paper presented at the Hypertext, Washington, D.C.

Shneiderman, B. (1998). Designing the User Interface. (Third ed.): Addison Wesley Longman.

Thuring, M., Hannemann, J., & Hake, J. M. (1995). Hypermedia and Cognition: Designing for Comprehension. Communications of the ACM, 38(8), 57-66.

Troyer, O. M. F. D., & Leune, C. J. d. (1998, 1998). WSDM: A User Centered Design Method for Web Sites. Paper presented at the WWW7 Conference <http://infolab.kub.nl/prj/wsdm/www7/final/paper.html> accessed Feb. 20, 1999.

Vora, P. (1997). Human Factors Methodology. In C. Forsythe, E. Grose, & J. Ratner (Eds.), Human Factors and Web Development : Lawrence Erlbaum Associates.

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� Unless specified otherwise, clients in this paper mean “web browsers” and servers mean “web servers”.

� We ignore browser specific technologies like cookies that allow for maintenance of state between pages.

� Examples include sound and image contained in a document.

� Examples include protocol specific data such as GET requests from the client to the server, as well as alphanumeric data that is specific to the application.

� In this work, we reference a large number of current technologies. Rather than referencing each one, we urge the reader to reference one of several excellent books on technologies of the WWW.

� The display of XML documents is controlled by an accompanying XSL (extensible style sheet) which allows the same content to be displayed differently.

� Many applications work around this by using proprietary technologies like cookies.

� This can happen even if the page was dynamically generated in the CGI application by the server, once it is available in the client cache.

� As an example of using client side processing to maintain state, consider an application that requires a complicated series of inputs from the user, where each input is dependent on the previous ones. A Java applet can take the user through these interrelated activities, and obtain the required input. Once these interrelated (input) events are done, it can then contact the WWW server with the sequence of inputs to perform a server side event.

� We ignore processing that is part of the HTTP protocol.

� This, of course, is similar to notions of quality in relational database systems.

� The application is assumed to be running on a WWW server with a valid address.

[image: image8.wmf]index.html Canvas

Corporate Overview

text

Our Products

text

Professional Services

text

Data Warehousing

text

Employment

Opportunities

text

op.html

Co. Message

text

co.html

ps

.html

dw

.html

eo

.html

Contact Us

button

Co. Logo

.

gif

Corporate Overview

button

Our Products

button

Professional Services

button

Data Warehousing

button

Employment

Opportunities

button

co.html

ps

.html

dw

.html

eo

.html

op.html

cu.html

What’s New

button

wn

.html

Home

button

index.html

Contact Us

text

cu.html

What’s New

text

wn

.html

Home

text

index.html

[image: image9.wmf]co.html Canvas

Introduction

Text_content

Management Team

Text_content

Problems Solved

Text_content

Products

Text_content

Competitive

Advantage

Text_content

Services

Text_content

Summary

Text_content

Management Team

Text

Problems Solved

Text

Products

Text

Competitive

Advantage

Text

Services

Text

Summary

Text

co.html#management Team

co.html#Problems Solved

co.html#Products

co.html#Advantages

co.html#Services

co.html#Summary

IS_Arch_diagram

.

gif

[image: image10.wmf]CV name

IC-ICD

Contained_in

Contained_in

Contained_in

Contained_in

CV name

URL

CV name

IC name

IC name

type

[image: image11.wmf]Canvas View

Information Chunk

Information Chunk Depiction

Relationship between

Information Chunks

HLWA1

HLWA2

HLOA

IC-ICD

CV name

CV name

IC-ICD

Contained-in

Contained_in

URL

IC name

Type

CV name

[image: image12.wmf]co.html Canvas

Introduction

Text_content

Management Team

Text_content

Problems Solved

Text_content

Products

Text_content

Competitive

Advantage

Text_content

Services

Text_content

Summary

Text_content

Products

Solve Problems

IS_Arch_diagram

.

gif

Architecture

contained in products

description

Leads to

Services Solve

Problems

[image: image13.wmf]Degree of

Structure of

Pages

Location of Processing

Degree of Support for

Interrelated Events

HTML

XML

Complete

Flexibility

No Processing

Server

Client

Client and Server

No Events

Only I & I events

Sequences of

interrelated events

 interspersed with sets

of I & I events

Sequence of

Interrelated Events

_971275436.ppt

Canvas View

Information Chunk

Information Chunk Depiction

Relationship between

Information Chunks

HLWA1

HLWA2

HLOA

IC-ICD

CV name

CV name

IC-ICD

Contained-in

Contained_in

URL

IC name

Type

CV name

_971278614.ppt

co.html Canvas

co.html#management Team

co.html#Problems Solved

co.html#Products

co.html#Advantages

co.html#Services

co.html#Summary

Introduction

Text_content

Management Team

Text_content

Problems Solved

Text_content

Products

Text_content

Competitive

Advantage

Text_content

Services

Text_content

Summary

Text_content

Management Team

Text

Problems Solved

Text

Products

Text

Competitive

Advantage

Text

Services

Text

Summary

Text

IS_Arch_diagram

.gif

_971279216.ppt

Degree of

Structure of

Pages

Location of Processing

Degree of Support for

Interrelated Events

HTML

XML

Complete

Flexibility

No Processing

Server

Client

Client and Server

No Events

Only I & I events

Sequences of

interrelated events

 interspersed with sets

of I & I events

Sequence of

Interrelated Events

_971278634.ppt

co.html Canvas

Products

Solve Problems

Architecture

contained in products

description

Leads to

Services Solve

Problems

Introduction

Text_content

Management Team

Text_content

Problems Solved

Text_content

Products

Text_content

Competitive

Advantage

Text_content

Services

Text_content

Summary

Text_content

IS_Arch_diagram

.gif

_971278572.ppt

index.html Canvas

op.html

co.html

ps.html

dw.html

eo.html

co.html

ps.html

dw.html

eo.html

op.html

cu.html

wn.html

index.html

cu.html

wn.html

index.html

Corporate Overview

text

Our Products

text

Professional Services

text

Data Warehousing

text

Employment

Opportunities

text

Co. Message

text

Contact Us

button

Co. Logo

.gif

Corporate Overview

button

Our Products

button

Professional Services

button

Data Warehousing

button

Employment

Opportunities

button

What’s New

button

Home

button

Contact Us

text

What’s New

text

Home

text

_971180593.ppt

Degree of

Structure of

Pages

Location of Processing

Degree of Support for

Interrelated Events

HTML

XML

Complete

Flexibility

Coherence

Cognitive Overhead

Cohesion

Coupling

Usability of

non-hypertext

interface

Anticipated

Download Times

_971269450.ppt

CV name

IC-ICD

Contained_in

Contained_in

Contained_in

Contained_in

CV name

URL

CV name

IC name

IC name

type

